Stan Lab

CS 109b Staff
2/21/18 - 2/22/18

Motivation

® How do we normalize posteriors?

Normalization Constant Example:
Given a dataset D = [x1, xo,x,]

Bayes Rule tells us that:

P(0| D) = PDAPO where

P(0) is our prior distribution,
P(D | 0) is our likelihood function,
P(6 | D) is our posterior distribution

Problem: How do we calculate P(D)?
P(D) = [P(D,0)do,

which can be very high-dimensional and difficult to com-

Motivation

® How do we normalize posteriors?
® Conjugate priors
® Metropolis-Hastings
® QOther forms of MCMC

e Strong developments in both sampling algorithms
and computational power have made Bayesian

models more feasible

Background

e Stan was developed by Andrew Gelman (PhD from
Harvard in 1990) and his lab at Columbia

University
e BDA

® Many predecessors to Stan such as Bugs, Jags, etc.

® Landmark paper: The No-U-Turn Sampler: Adaptively
Setting Path Lengths in Hamiltonian Monte Carlo

® |nspired by ideas from physics

Bayesian Workflow

“How to structure the process of your analysis to maximise
[sic] the odds that you build useful models.”

-Jim Savage

Sean Talts

C are Stan Newvalaner

Scope out
your
problem

What inputs
and outputs
can help you
learn? What
relationships
can you see by
eye?

Specify
likelihood
& priors
Use
knowledge of
the problem to
construct a
generative
model and
shape the
scope of the
parameters

Bayesian Workflow

Check the
model with
fakedata

Generate
data, fit
model, and
evaluate fitas
a sanity check

Fitthe
model to
real data

To recover
parameters

Check
diagnostics

Algorithms
should come
with
diagnostics
that letyou
know when
they’re not
working

Graph fit
estimates
Understand

your
inferences

Check
predictive
posterior
Perform PPCs

to understand
predictions

Compare
models

Iterate on
model design,
choose a
model

Modeling Heights and
Weights

height ~ N(a + 3 * weight, o?)

T —

Modeling Heights and
Weights

® |n Stan, code is structured in blocks
® Functions
® Data
Transformed Data (optional)
Parameters
Transformed Parameters (optional)
Model
Generated Quantities (optional)

Modeling Heights and
Weights

® |n Stan, code is structured in blocks
® Functions
e Data

data {
int num_people;
vector<lower=0>[num_people] weights;
vector<lower=0> heights[num_people];

}

Notice how variables are statically-typed, rather than the
dynamically-typed format you’ve used in R and in Python. You'll
also have to specify whenever you want to end a line with a

- semicolon.

Modeling Heights and
Weights

® |n Stan, code is structured in blocks
® Functions

® Data
e Parameters

parameters {
real beta;
real alpha;
real<lower=0> sigma;

Modeling Heights and
Weights

® |n Stan, code is structured in blocks
® Functions
® Data
® Parameters
e Model

model {
heights ~ normal(beta * weights + alpha, sigma);

}

Modeling Heights and
Weights

® |n Stan, code is structured in blocks
® Functions
® Data
® Parameters
e Model

model {
heights ~ normal(beta * weights + alpha, sigma);

W ———— O ——— - ———————

: alpha ~ normal(50, 50); // avg cm for 0 kg
. sigma ~ normal(®, 5); // variation from average

}

Modeling Heights and
Weights

e After we fit our model, we can perform a sanity
check

® 1) Draw parameter values from the posterior

® ?2) Generate data based on those parameter values
e 3) Fit model to generated data

e 4) Check if fit is reasonable

generated quantities {

real<lower=0> heights[N];

real beta = normal_rng(0, 10);

real alpha = normal_rng(50, 50);

real sigma = fabs(normal_rng(0, 5));

for (n in 1:N)

heights[n] = normal_rng(beta * weights[n] + alpha, sigma);

}

Your Turn!

® Open a blank R script and source the file
“count_data.R”, which is provided in the Lab
materials

7 11

® Make sure you have the “rstan”, “ggplot2”, and
“bayesplot” packages installed

® Try your best to fit the model described by the
Instructor

