
Download the notebook for this 
section from the CS109 repo or 

here: http://bit.ly/109_S6
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Linear Regression

Y=α+β1X1+...+βn+Xn+ϵ

Four Assumptions of Linear Regression:
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Linear Regression

Y=α+β1X1+...+βn+Xn+ϵ

Four Assumptions of Linear Regression:
1. Linearity: Our dependent variable Y is a linear combination of 

the explanatory variables X (and the error terms)
2. Observations are independent of one another 
3. I.I.D error terms that are Normally Distributed ~ N(0,σ^2)
4. Design matrix X is Full Rank. That is:

1. We don't have more predictors than we have observations (aka, our model 
is not “overdetermined”) 

2. We can’t have an exact linear relationship between two of our predictors ( 
multicollinearity)
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Linear Regression

4

Linear models presume that the only stochastic part of the model is 
the normally-distributed noise ϵ around the predicted mean.



Linear Regression
Suppose we have a binary outcome variable. Can we use Linear 

Regression?
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Linear Regression for binary outcomes?

If our OLS regression is of the form: 
Y = β0 +  β1X + ϵ ; where Y = (0, 
1)

Then we will have the following 
problems: 

• The error terms are 
heteroskedastic

• ϵ is not normally distributed 
because Y takes on only two 
values

• The predicted probabilities can be 
greater than 1 or less than 0

6More generally, just not a very useful model! 



Datasets where linear regression is 
problematic

Linear models presume that the only stochastic part of the model is the 
normally-distributed noise ϵ around the predicted mean. However, there 
are many data sets where this is not the case such as:  
• Binary response data where there are only two outcomes (yes/no, 

0/1, etc.) 
• Categorical or Ordinal Data of any type, where the outcome is one 

of a number of discrete (possibly ordered) classes 
• Count data in which the outcome is restricted to non-negative 

integers  
• Continuous data in which the noise is not normally distributed

Generalized Linear Models (GLMs), of which Logistic regression is a 
specific type, allow us to model and predict these types of datasets 
without violating the assumptions of linear regression. Logistic 
regression is most useful for binary response and categorical data. 7
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Odds & Odds Ratios

Recall the definitions of an odds:

The odds has a range of 0 to ¥ with values greater than 1 associated with 
an event being more likely to occur than to not occur and values less than 1 
associated with an event that is less likely to occur than not occur.

The logit is defined as the log of the odds: 

This transformation is useful because it creates a variable with a range from -¥ to 
+¥. Hence, this transformation solves the problem we encountered in fitting a linear 
model to probabilities. Because probabilities (the dependent variable) only range 
from 0 to 1, we can get linear predictions that are outside of this range. If we 
transform our probabilities to logits, then we do not have this problem because the 
range of the logit is not restricted. In addition, the interpretation of logits is simple—
take the exponential of the logit and you have the odds for the two groups in 
question.
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Logistic Regression

ln[p/(1-p)] =  b0 + b1X 

§ ln[p/(1-p)]: log odds ratio, 
or "logit“
§ [range=-∞ to +∞]

§ p/(1-p) is the "odds ratio" 
§ [range=0 to ∞]

§ p is the probability that the 
event Y occurs, p(Y=1) 
§ [range=0 to 1]
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