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Announcements

Homeworks:
HW3 is due tonight, late day til tomorrow.

HW4 is an individual HW.  Only private piazza posts.

Projects: 
- Milestone 1: remember to submit your project groups and topic preferences.  Be sure to

follow directions on what to submit!  
- Expect to hear from us quickly as to the topic assignments.  Vast majority of groups will 

get their first choice.
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Lecture Outline

Regularization wrap-up

Probabilistic perspective of linear regression

Interaction terms: a brief review

Big Data and High dimensionality

Principle component analysis (PCA)
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The Geometry of Regularization
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Variable Selection as Regularization

Since LASSO regression tend to produce zero estimates for a number of model 

parameters - we say that LASSO solutions are sparse - we consider LASSO to be a 

method for variable selection.

Many prefer using LASSO for variable selection (as well as for suppressing extreme 

parameter values) rather than stepwise selection, as LASSO avoids the statistic 

problems that arises in stepwise selection.

Question: What are the pros and cons of the two approaches? 
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LASSO vs. Ridge: !" estimates as a function of #
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Which is a plot of the LASSO estimates?  Which is a plot of the Ridge estimates?
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General Guidelines: LASSO vs. Ridge
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Regularization methods are great for several reasons.  They help:

• Reduce overfitting

• Deal with Multicollinearity

• With Variable Selection

Keep in mind, when sample sizes are large (n >> 10,000) then regularization might 
not be needed (unless p is also very large).  OLS often does very well when linearity 

is reasonable and overfitting is not a concern.

When to use each: Ridge generally is used to help deal with multicollinearity, and 

LASSO is generally used to deal with overfitting.  But do them both and CV!
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Behind Ordinary Lease Squares, AIC, BIC
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Likelihood Functions

Recall that our statistical model for linear regression in matrix notation is:

It is standard to suppose that !~# 0, &' . In fact, in many analyses we have been 
making this assumption. Then,

Question: Can you see why?

Note that # )*, &' is naturally a function of the model parameters *, since the data 
is fixed. 
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Likelihood Functions

We call:

the likelihood function, as it gives the likelihood of the observed data for a chosen 
model !.
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Maximum Likelihood Estimators

Once we have a likelihood function, ℒ(#), we have strong incentive to seek values 
of to maximize ℒ.

Can you see why?

The model parameters that maximizes ℒ are called maximum likelihood 
estimators (MLE) and are denoted:

The model constructed with MLE parameters assigns the highest likelihood to the 
observed data.
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Maximum Likelihood Estimators

But how does one maximize a likelihood function?

Fix a set of n observations of J predictors, X, and a set of corresponding response 
values, Y; consider a linear model ! = #$ + &.

If we assume that & ∼ ((0, ,-) then the likelihood for each observation is

and the likelihood for the entire set of data is
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Maximum Likelihood Estimators

Through some algebra, we can show that maximizing ℒ(#), is equivalent to 

minimizing MSE:

Minimizing MSE or RSS is called ordinary least squares.
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Using Interaction Terms
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Interaction Terms: A Review 

Recall that an interaction term between predictors !" and !# can be 
incorporated into a regression model by including the multiplicative 
(i.e. cross) term in the model, for example 

$ = &' + &"!" + &#!# + &)(!"+!#) + ,

Suppose !" is a binary predictor indicating whether a NYC ride pickup 
is a tax or an Uber, !# is the times of day of the pickup and $ is the 
length of the ride. 
What is the interpretation of &)? 
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Including Interaction Terms in Models 

Recall that to avoid overfitting, we sometimes elect to exclude a 
number of terms in a linear model. 

It is standard practice to always include the main effects in the model. 
That is, we always include the terms involving only one predictor, 
!"#", !$#$ etc. 

Question: Why are the main effects important? 

Question: In what type of model would it make sense to include the 
interaction term without one of the main effects? 

16



CS109A, PROTOPAPAS, RADER

How would you parameterize these model?

17

nyc_cab_df



CS109A, PROTOPAPAS, RADER

NYC Taxi vs. Uber

We’d like to compare Taxi and Uber rides in NYC (for example, how 
much the fare costs based on length of trip, time of day, location, etc.).
A public dataset has 1.9 million Taxi and Uber trips. Each trip is 
described by p = 23 useable predictors (and 1 response variable).
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How Many Interaction Terms? 

This NYC taxi and Uber dataset has 1.9 million Taxi and Uber trips. Each trip is 
described by p = 23 useable predictors (and 1 response variable). How many 
interaction terms are there? 

• Two-way interactions: 
!
2 = $($&')

) = 253

• Three-way interactions: 
!
3 = $($&')($&))

, = 1771
• Etc. 
The total number of all possible interaction terms (including main effects) is. 

What are some problems with building a model that includes all possible 
interaction terms? 
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How Many Interaction Terms? 

In order to wrangle a data set with over 1 billion observations, we
could use random samples of 100k observations from the dataset to 
build our models. If we include all possible interaction terms, our 
model will have 8.3 mil parameters. We will not be able to uniquely 
determine 8.3 mil parameters with only 100k observations. In this 
case, we call the model unidentifiable. 
In practice, we can: 
• increase the number of observation 
• consider only scientifically important interaction terms 
• perform variable selection 
• perform another dimensionality reduction technique like PCA 
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Big Data and High Dimensionality
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What is ‘Big Data’?

In the world of Data Science, the term Big Data gets thrown around a 
lot.  What does Big Data mean?
A rectangular data set has two dimensions: number of observations 
(n) and the number of predictors (p). Both can play a part in defining a 
problem as a Big Data problem.
What are some issues when:
• n is big (and p is small to moderate)?  
• p is big (and n is small to moderate)?
• n and p are both big?
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When n is big

When the sample size is large, this is typically not much of an issue 
from the statistical perspective, just one from the computational 
perspective.
• Algorithms can take forever to finish.  Estimating the coefficients of 

a regression model, especially one that does not have closed form 
(like LASSO), can take a while.  Wait until we get to Neural Nets!

• If you are tuning a parameter or choosing between models (using
CV), this exacerbates the problem.

What can we do to fix this computational issue?
• Perform ‘preliminary’ steps (model selection, tuning, etc.) on a 

subset of the training data set.  10% or less can be justified
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Keep in mind, big n doesn’t solve everything

The era of Big Data (aka, large n) can help us answer lots of interesting 
scientific and application-based questions, but it does not fix 
everything.

Remember the old adage: “crap in = crap out”.  That is to say, if the 
data are not representative of the population, then modeling results 
can be terrible.  Random sampling ensures representative data.

Xiao-Li Meng does a wonderful job describing the subtleties involved 
(WARNING: it’s a little technical, but digestible):
https://www.youtube.com/watch?v=8YLdIDOMEZs

https://www.youtube.com/watch?v=8YLdIDOMEZs
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When p is big

When the number of predictors is large (in any form: interactions, 
polynomial terms, etc.), then lots of issues can occur.

• Matrices may not be invertible (issue in OLS).

• Multicollinearity is likely to be present

• Models are susceptible to overfitting

This situation is called High Dimensionality, and needs to be 
accounted for when performing data analysis and modeling.

What techniques have we learned to deal with this?
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When Does High Dimensionality Occur?

The problem of high dimensionality can occur when the number of 

parameters exceeds or is close to the number of observations. This can 

occur when we consider lots of interaction terms, like in our previous 

example. But this can also happen when the number of main effects is high. 

For example:

• When we are performing polynomial regression with a high degree and 

a large number of predictors.

• When the predictors are genomic markers (and possible interactions) in 

a computational biology problem.

• When the predictors are the counts of all English words appearing in a 

text.
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A Framework For Dimensionality Reduction

One way to reduce the dimensions of the feature space is to create a new, smaller 

set of predictors by taking linear combinations of the original predictors.

We choose Z1, Z2,…, Zm, where m < p and where each Zi is a linear combination of 

the original p predictors

for fixed constants !"#.  Then we can build a linear regression regression model 

using the new predictors

Notice that this model has a smaller number (m+1 < p+1) of parameters.
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A Framework For Dimensionality Reduction (cont.)

A method of dimensionality reduction includes 2 steps:

• Determine a optimal set of new predictors Z1,…, Zm, for m < p.

• Express each observation in the data in terms of these new predictors. The 

transformed data will have m columns rather than p.

Thereafter, we can fit a model using the new predictors. 

The method for determining the set of new predictors (what do we mean by an 

optimal predictors set) can differ according to application. We will explore a way 

to create new predictors that captures the variations in the observed data.
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Principal Components Analysis (PCA)
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Principal Components Analysis (PCA)

Principal Components Analysis (PCA) is a method to identify a new set 
of predictors, as linear combinations of the original ones, that 
captures the `maximum amount' of variance in the observed data.
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PCA (cont.)

Principal Components Analysis (PCA) produces a list of p principle 
components Z1,…, Zp such that
• Each Zi is a linear combination of the original predictors, and it's vector 

norm is 1
• The Zi 's are pairwise orthogonal
• The Zi 's are ordered in decreasing order in the amount of captured 

observed variance.
That is, the observed data shows more variance in the direction of Z1 than 
in the direction of Z2. 
To perform dimensionality reduction we select the top m principle 
components of PCA as our new predictors and express our observed data in 
terms of these predictors.



CS109A, PROTOPAPAS, RADER

The Intuition Behind PCA

Top PCA components capture the most of amount of variation 
(interesting features) of the data. 

Each component is a linear combination of the original predictors - we 
visualize them as vectors in the feature space.
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The Intuition Behind PCA (cont.)

Transforming our observed data means projecting our dataset onto 
the space defined by the top m PCA components, these components 
are our new predictors.
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The Math behind PCA

PCA is a well-known result from linear algebra.  Let Z be the n x p
matrix consisting of columns Z1,…, Zp (the resulting PCA vectors), X be 
the n x p matrix of X1,…, Xp of the original data variables (each 
standardized to have mean zero and variance one, and without the 
intercept), and let W be the p x p matrix whose columns are the 
eigenvectors of the square matrix X!X then
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Implementation of PCA using linear algebra

To implement PCA yourself using this linear algebra result, you can perform the 
following steps:

• Standardize each of your predictors (so they each have mean = 0, var = 1).

• Calculate the eigenvectors of the              matrix and create the matrix with 
those columns, W, in order from largest to smallest eigenvalue.

• Use matrix multiplication to determine                      .

Note: this is not efficient from a computational perspective.  This can be sped up 
using Cholesky decomposition.

However, PCA is easy to perform in Python using the decomposition.PCA
function in the sklearn package.
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PCA example in sklearn
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PCA example in sklearn
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A common plot is to look at the scatterplot of the first two principal 
components, shown below for the NYC Taxi data:

What do you notice?
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What’s the difference: Standardize vs. Normalize

What is the difference between Standardizing and Normalizing a 
variable?

• Normalizing means to bound your variable’s observations between 
zero and one.  Good when interpretations of “percentage of max 
value” makes sense.  

• Standardizing means to re-center and re-scale your variable’s 
observations to have mean zero and variance one.  Good to put all 
of your variables on the same scale (have same weight) and to turn 
interpretations into “changes in terms of standard deviation.”

Warning: the term “normalize” gets incorrectly used all the time 
(online, especially)!
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When to Standardize vs. Normalize

When should you do each?

• Normalizing is only for improving interpretation (and dealing with 

numerically very large or small measures).  Does not improve 

algorithms otherwise.

• Standardizing can be used for improving interpretation and should 

be used for specific algorithms. Which ones?  Regularization and 

PCA!

*Note: you can standardize without assuming things to be 

[approximately] Normally distributed!  It just makes the interpretation 

nice if they are Normally distributed.
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PCA for Regression (PCR)
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PCA for Regression (PCR)

PCA is easy to use in Python, so how do we then use it for regression modeling in 

a real-life problem?

If we use all p of the new Zj, then we have not improved the dimensionality.  

Instead, we select the first M PCA variables, Z1,...,ZM, to use as predictors in a 

regression model.

The choice of M is important and can vary from application to application.  It 

depends on various things, like how collinear the predictors are, how truly related 

they are to the response, etc...

What would be the best way to check for a specified problem?

Train, Test, and Cross Validation!!!
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A few notes on using PCA

• PCA is an unsupervised algorithm.  Meaning?  It is done independent of 
the outcome variable.

• PCA is not so good because:

1. Interpretation of coefficients in PCR is completely lost.  So do not
do if interpretation is important.

2. Will not improve predictive ability of a model.

• PCA is great for:

1. Reducing dimensionality in very high dimensional settings.

2. Visualizing how predictive your features can be of your response, 
especially in the classification setting (more to come in Module 2).

3. Reducing multicollinearity, and thus may improve the 
computational time of fitting models.
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A few notes on using PCA

• PCA is an unsupervised algorithm.  Meaning?  It is done independent of 
the outcome variable.

• PCA is not so good because:

1. Interpretation of coefficients in PCR is completely lost.  So do not
do if interpretation is important.

2. Will not improve predictive ability of a model.

• PCA is great for:

1. Reducing dimensionality in very high dimensional settings.

2. Visualizing how predictive your features can be of your response, 
especially in the classification setting (more to come in Module 2).

3. Reducing multicollinearity, and thus may improve the 
computational time of fitting models.


