
CS109A Introduction to Data Science
Pavlos Protopapas and Kevin Rader

Lecture 8: High Dimensionality & PCA

CS109A, PROTOPAPAS, RADER

Announcements

Homeworks:
HW3 is due tonight, late day til tomorrow.

HW4 is an individual HW. Only private piazza posts.

Projects:
- Milestone 1: remember to submit your project groups and topic preferences. Be sure to

follow directions on what to submit!
- Expect to hear from us quickly as to the topic assignments. Vast majority of groups will

get their first choice.

2

CS109A, PROTOPAPAS, RADER

Lecture Outline

Regularization wrap-up

Probabilistic perspective of linear regression

Interaction terms: a brief review

Big Data and High dimensionality

Principle component analysis (PCA)

3

CS109A, PROTOPAPAS, RADER

The Geometry of Regularization

!"

!#
$!%&'

MSE=D

C

!"

!#
$!%&' MSE=D

C

C

4

CS109A, PROTOPAPAS, RADER

Variable Selection as Regularization

Since LASSO regression tend to produce zero estimates for a number of model

parameters - we say that LASSO solutions are sparse - we consider LASSO to be a

method for variable selection.

Many prefer using LASSO for variable selection (as well as for suppressing extreme

parameter values) rather than stepwise selection, as LASSO avoids the statistic

problems that arises in stepwise selection.

Question: What are the pros and cons of the two approaches?

5

CS109A, PROTOPAPAS, RADER

LASSO vs. Ridge: !" estimates as a function of #

6

Which is a plot of the LASSO estimates? Which is a plot of the Ridge estimates?

CS109A, PROTOPAPAS, RADER

General Guidelines: LASSO vs. Ridge

7

Regularization methods are great for several reasons. They help:

• Reduce overfitting

• Deal with Multicollinearity

• With Variable Selection

Keep in mind, when sample sizes are large (n >> 10,000) then regularization might
not be needed (unless p is also very large). OLS often does very well when linearity

is reasonable and overfitting is not a concern.

When to use each: Ridge generally is used to help deal with multicollinearity, and

LASSO is generally used to deal with overfitting. But do them both and CV!

CS109A, PROTOPAPAS, RADER

Behind Ordinary Lease Squares, AIC, BIC

8

CS109A, PROTOPAPAS, RADER

Likelihood Functions

Recall that our statistical model for linear regression in matrix notation is:

It is standard to suppose that !~# 0, &' . In fact, in many analyses we have been
making this assumption. Then,

Question: Can you see why?

Note that #)*, &' is naturally a function of the model parameters *, since the data
is fixed.

9

Y = X� + ✏

y|�, x, ✏ ⇠ N (x�,�2)

CS109A, PROTOPAPAS, RADER

Likelihood Functions

We call:

the likelihood function, as it gives the likelihood of the observed data for a chosen
model !.

10

L(�) = N (x�,�2)

CS109A, PROTOPAPAS, RADER

Maximum Likelihood Estimators

Once we have a likelihood function, ℒ(#), we have strong incentive to seek values
of to maximize ℒ.

Can you see why?

The model parameters that maximizes ℒ are called maximum likelihood
estimators (MLE) and are denoted:

The model constructed with MLE parameters assigns the highest likelihood to the
observed data.

11

���MLE = argmax
���

L(���)

CS109A, PROTOPAPAS, RADER

Maximum Likelihood Estimators

But how does one maximize a likelihood function?

Fix a set of n observations of J predictors, X, and a set of corresponding response
values, Y; consider a linear model ! = #$ + &.

If we assume that & ∼ ((0, ,-) then the likelihood for each observation is

and the likelihood for the entire set of data is

12

Li(���) = N (yi;���
>xxxi,�

2)

L(���) =
nY

i=1

N (yi;���
>xxxi,�

2)

CS109A, PROTOPAPAS, RADER

Maximum Likelihood Estimators

Through some algebra, we can show that maximizing ℒ(#), is equivalent to

minimizing MSE:

Minimizing MSE or RSS is called ordinary least squares.

13

���MLE = argmax
���

L(���) = argmin
���

1

n

nX

i=1

|yi � ���>xxxi|2 = argmin
���

MSE

CS109A, PROTOPAPAS, RADER

Using Interaction Terms

CS109A, PROTOPAPAS, RADER

Interaction Terms: A Review

Recall that an interaction term between predictors !" and !# can be
incorporated into a regression model by including the multiplicative
(i.e. cross) term in the model, for example

$ = &' + &"!" + &#!# + &)(!"+!#) + ,

Suppose !" is a binary predictor indicating whether a NYC ride pickup
is a tax or an Uber, !# is the times of day of the pickup and $ is the
length of the ride.
What is the interpretation of &)?

15

CS109A, PROTOPAPAS, RADER

Including Interaction Terms in Models

Recall that to avoid overfitting, we sometimes elect to exclude a
number of terms in a linear model.

It is standard practice to always include the main effects in the model.
That is, we always include the terms involving only one predictor,
!"#", !$#$ etc.

Question: Why are the main effects important?

Question: In what type of model would it make sense to include the
interaction term without one of the main effects?

16

CS109A, PROTOPAPAS, RADER

How would you parameterize these model?

17

nyc_cab_df

CS109A, PROTOPAPAS, RADER

NYC Taxi vs. Uber

We’d like to compare Taxi and Uber rides in NYC (for example, how
much the fare costs based on length of trip, time of day, location, etc.).
A public dataset has 1.9 million Taxi and Uber trips. Each trip is
described by p = 23 useable predictors (and 1 response variable).

18

CS109A, PROTOPAPAS, RADER

How Many Interaction Terms?

This NYC taxi and Uber dataset has 1.9 million Taxi and Uber trips. Each trip is
described by p = 23 useable predictors (and 1 response variable). How many
interaction terms are there?

• Two-way interactions:
!
2 = $($&')

) = 253

• Three-way interactions:
!
3 = $($&')($&))

, = 1771
• Etc.
The total number of all possible interaction terms (including main effects) is.

What are some problems with building a model that includes all possible
interaction terms?

19

∑012$!
3 = 2$ ≈ 8.3million

CS109A, PROTOPAPAS, RADER

How Many Interaction Terms?

In order to wrangle a data set with over 1 billion observations, we
could use random samples of 100k observations from the dataset to
build our models. If we include all possible interaction terms, our
model will have 8.3 mil parameters. We will not be able to uniquely
determine 8.3 mil parameters with only 100k observations. In this
case, we call the model unidentifiable.
In practice, we can:
• increase the number of observation
• consider only scientifically important interaction terms
• perform variable selection
• perform another dimensionality reduction technique like PCA

20

CS109A, PROTOPAPAS, RADER

Big Data and High Dimensionality

CS109A, PROTOPAPAS, RADER

What is ‘Big Data’?

In the world of Data Science, the term Big Data gets thrown around a
lot. What does Big Data mean?
A rectangular data set has two dimensions: number of observations
(n) and the number of predictors (p). Both can play a part in defining a
problem as a Big Data problem.
What are some issues when:
• n is big (and p is small to moderate)?
• p is big (and n is small to moderate)?
• n and p are both big?

CS109A, PROTOPAPAS, RADER

When n is big

When the sample size is large, this is typically not much of an issue
from the statistical perspective, just one from the computational
perspective.
• Algorithms can take forever to finish. Estimating the coefficients of

a regression model, especially one that does not have closed form
(like LASSO), can take a while. Wait until we get to Neural Nets!

• If you are tuning a parameter or choosing between models (using
CV), this exacerbates the problem.

What can we do to fix this computational issue?
• Perform ‘preliminary’ steps (model selection, tuning, etc.) on a

subset of the training data set. 10% or less can be justified

CS109A, PROTOPAPAS, RADER

Keep in mind, big n doesn’t solve everything

The era of Big Data (aka, large n) can help us answer lots of interesting
scientific and application-based questions, but it does not fix
everything.

Remember the old adage: “crap in = crap out”. That is to say, if the
data are not representative of the population, then modeling results
can be terrible. Random sampling ensures representative data.

Xiao-Li Meng does a wonderful job describing the subtleties involved
(WARNING: it’s a little technical, but digestible):
https://www.youtube.com/watch?v=8YLdIDOMEZs

https://www.youtube.com/watch?v=8YLdIDOMEZs

CS109A, PROTOPAPAS, RADER

When p is big

When the number of predictors is large (in any form: interactions,
polynomial terms, etc.), then lots of issues can occur.

• Matrices may not be invertible (issue in OLS).

• Multicollinearity is likely to be present

• Models are susceptible to overfitting

This situation is called High Dimensionality, and needs to be
accounted for when performing data analysis and modeling.

What techniques have we learned to deal with this?

CS109A, PROTOPAPAS, RADER

When Does High Dimensionality Occur?

The problem of high dimensionality can occur when the number of

parameters exceeds or is close to the number of observations. This can

occur when we consider lots of interaction terms, like in our previous

example. But this can also happen when the number of main effects is high.

For example:

• When we are performing polynomial regression with a high degree and

a large number of predictors.

• When the predictors are genomic markers (and possible interactions) in

a computational biology problem.

• When the predictors are the counts of all English words appearing in a

text.

CS109A, PROTOPAPAS, RADER

A Framework For Dimensionality Reduction

One way to reduce the dimensions of the feature space is to create a new, smaller

set of predictors by taking linear combinations of the original predictors.

We choose Z1, Z2,…, Zm, where m < p and where each Zi is a linear combination of

the original p predictors

for fixed constants !"#. Then we can build a linear regression regression model

using the new predictors

Notice that this model has a smaller number (m+1 < p+1) of parameters.

CS109A, PROTOPAPAS, RADER

A Framework For Dimensionality Reduction (cont.)

A method of dimensionality reduction includes 2 steps:

• Determine a optimal set of new predictors Z1,…, Zm, for m < p.

• Express each observation in the data in terms of these new predictors. The

transformed data will have m columns rather than p.

Thereafter, we can fit a model using the new predictors.

The method for determining the set of new predictors (what do we mean by an

optimal predictors set) can differ according to application. We will explore a way

to create new predictors that captures the variations in the observed data.

CS109A, PROTOPAPAS, RADER

Principal Components Analysis (PCA)

CS109A, PROTOPAPAS, RADER

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) is a method to identify a new set
of predictors, as linear combinations of the original ones, that
captures the `maximum amount' of variance in the observed data.

CS109A, PROTOPAPAS, RADER

PCA (cont.)

Principal Components Analysis (PCA) produces a list of p principle
components Z1,…, Zp such that
• Each Zi is a linear combination of the original predictors, and it's vector

norm is 1
• The Zi 's are pairwise orthogonal
• The Zi 's are ordered in decreasing order in the amount of captured

observed variance.
That is, the observed data shows more variance in the direction of Z1 than
in the direction of Z2.
To perform dimensionality reduction we select the top m principle
components of PCA as our new predictors and express our observed data in
terms of these predictors.

CS109A, PROTOPAPAS, RADER

The Intuition Behind PCA

Top PCA components capture the most of amount of variation
(interesting features) of the data.

Each component is a linear combination of the original predictors - we
visualize them as vectors in the feature space.

CS109A, PROTOPAPAS, RADER

The Intuition Behind PCA (cont.)

Transforming our observed data means projecting our dataset onto
the space defined by the top m PCA components, these components
are our new predictors.

CS109A, PROTOPAPAS, RADER

The Math behind PCA

PCA is a well-known result from linear algebra. Let Z be the n x p
matrix consisting of columns Z1,…, Zp (the resulting PCA vectors), X be
the n x p matrix of X1,…, Xp of the original data variables (each
standardized to have mean zero and variance one, and without the
intercept), and let W be the p x p matrix whose columns are the
eigenvectors of the square matrix X!X then

CS109A, PROTOPAPAS, RADER

Implementation of PCA using linear algebra

To implement PCA yourself using this linear algebra result, you can perform the
following steps:

• Standardize each of your predictors (so they each have mean = 0, var = 1).

• Calculate the eigenvectors of the matrix and create the matrix with
those columns, W, in order from largest to smallest eigenvalue.

• Use matrix multiplication to determine .

Note: this is not efficient from a computational perspective. This can be sped up
using Cholesky decomposition.

However, PCA is easy to perform in Python using the decomposition.PCA
function in the sklearn package.

CS109A, PROTOPAPAS, RADER

PCA example in sklearn

36

CS109A, PROTOPAPAS, RADER

PCA example in sklearn

37

A common plot is to look at the scatterplot of the first two principal
components, shown below for the NYC Taxi data:

What do you notice?

CS109A, PROTOPAPAS, RADER

What’s the difference: Standardize vs. Normalize

What is the difference between Standardizing and Normalizing a
variable?

• Normalizing means to bound your variable’s observations between
zero and one. Good when interpretations of “percentage of max
value” makes sense.

• Standardizing means to re-center and re-scale your variable’s
observations to have mean zero and variance one. Good to put all
of your variables on the same scale (have same weight) and to turn
interpretations into “changes in terms of standard deviation.”

Warning: the term “normalize” gets incorrectly used all the time
(online, especially)!

38

CS109A, PROTOPAPAS, RADER

When to Standardize vs. Normalize

When should you do each?

• Normalizing is only for improving interpretation (and dealing with

numerically very large or small measures). Does not improve

algorithms otherwise.

• Standardizing can be used for improving interpretation and should

be used for specific algorithms. Which ones? Regularization and

PCA!

*Note: you can standardize without assuming things to be

[approximately] Normally distributed! It just makes the interpretation

nice if they are Normally distributed.

39

CS109A, PROTOPAPAS, RADER

PCA for Regression (PCR)

CS109A, PROTOPAPAS, RADER

PCA for Regression (PCR)

PCA is easy to use in Python, so how do we then use it for regression modeling in

a real-life problem?

If we use all p of the new Zj, then we have not improved the dimensionality.

Instead, we select the first M PCA variables, Z1,...,ZM, to use as predictors in a

regression model.

The choice of M is important and can vary from application to application. It

depends on various things, like how collinear the predictors are, how truly related

they are to the response, etc...

What would be the best way to check for a specified problem?

Train, Test, and Cross Validation!!!

CS109A, PROTOPAPAS, RADER

A few notes on using PCA

• PCA is an unsupervised algorithm. Meaning? It is done independent of
the outcome variable.

• PCA is not so good because:

1. Interpretation of coefficients in PCR is completely lost. So do not
do if interpretation is important.

2. Will not improve predictive ability of a model.

• PCA is great for:

1. Reducing dimensionality in very high dimensional settings.

2. Visualizing how predictive your features can be of your response,
especially in the classification setting (more to come in Module 2).

3. Reducing multicollinearity, and thus may improve the
computational time of fitting models.

CS109A, PROTOPAPAS, RADER

A few notes on using PCA

• PCA is an unsupervised algorithm. Meaning? It is done independent of
the outcome variable.

• PCA is not so good because:

1. Interpretation of coefficients in PCR is completely lost. So do not
do if interpretation is important.

2. Will not improve predictive ability of a model.

• PCA is great for:

1. Reducing dimensionality in very high dimensional settings.

2. Visualizing how predictive your features can be of your response,
especially in the classification setting (more to come in Module 2).

3. Reducing multicollinearity, and thus may improve the
computational time of fitting models.

