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Announcements

Sections: Due to low attendance, Monday evening section is canceled. Instead we add 
one extra OH on Wednesday 5:30 – 7 (high demand).  

Office Hours for 209: You can use Pavlos and Kevin’s OH for 209 material. 

Homeworks:
Minor correction in the language for HW3. 

HW4 will be released on Tuesday 11:59pm. 

Two weeks

individual

Piazza only private messages.  

Projects: 
Milestone 1 due on Oct 3
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Lecture Outline

Overfitting

Bias vs Variance

Regularization: LASSO and Ridge

Regularization Methods: A Comparison
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Overfitting
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Overfitting
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Overfitting
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Overfitting
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Overfitting
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Overfitting
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Model Selection

Model selection is the application of a principled method to determine the 
complexity of the model, e.g. choosing a subset of predictors, choosing the 
degree of the polynomial model etc.

A strong motivation for performing model selection is to avoid overfitting, 
which we saw can happen when: 

• there are too many predictors:
• the feature space has high dimensionality

• the polynomial degree is too high

• too many cross terms are considered

• the coefficients values are too extreme
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Stepwise Variable Selection and Cross Validation

Last time, we addressed the issue of selecting optimal subsets of predictors 
(including choosing the degree of polynomial models) through:

stepwise variable selection - iteratively building an optimal subset of 
predictors by optimizing a fixed model evaluation metric each time,

Today we will see selecting an optimal model by cross validation - evaluating 
each model on multiple validation sets.

And also today, we will also address the issue of discouraging extreme 
values in model parameters
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Stepwise Variable Selection Computational Complexity

How many models did we evaluate?

• 1st step, J Models

• 2nd step, J-1 Models (add 1 predictor out of J-1 possible)

• 3rd step, J-2 Models (add 1 predictor out of J-2 possible)

• …

O(J2) ⌧ 2J for large J
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Cross Validation
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Cross Validation
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Cross Validation
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Cross Validation
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Cross Validation
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Validation
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Cross Validation: Motivation 

Using a single validation set to select amongst multiple models can be 
problematic - there is the possibility of overfitting to the validation 
set.

One solution to the problems raised by using a single validation set is to 
evaluate each model on multiple validation sets and average the 
validation performance. 

One can randomly split the training set into training and validation 
multiple times but randomly creating these sets can create the scenario 
where important features of the data never appear in our random draws.
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Leave-One-Out

Given a data set 𝑋",… , 𝑋% , where each 𝑋",… , 𝑋% contains J features. 

To ensure that every observation in the dataset is included in at least one 
training set and at least one validation set, we create training/validation splits 
using the leave one out method: 

• validation set: {𝑋'}	
• training set: 𝑋*' = {𝑋",… , 𝑋'*", 𝑋',", … , 𝑋%}		

for 𝑖 = 1,… , 𝑛:	

We fit the model on each training set, denoted 𝑓2345,	and evaluate it on the 
corresponding validation set, 𝑓2345	(𝑋'). 

The cross validation score is the performance of the model averaged across all 
validation sets: 

where L is a loss function. 
20

𝐶𝑉 Model =
1
𝑛
?𝐿(𝑓2345	(𝑋'))	
%
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K-Fold Cross Validation

Rather than creating n number of training/validation splits, each time leaving 
one data point for the validation set, we can include more data in the validation 
set using K-fold validation: 

• split the data into K uniformly sized chunks, {𝐶", … , 𝐶B}

• we create K number of training/validation splits, using one of the K 
chunks for validation and the rest for training. 

We fit the model on each training set, denoted 𝑓2C45 , and evaluate it on the 
corresponding validation set, 𝑓2C45	(𝐶'). The cross validation is the performance of 
the model averaged across all validation sets:

where L is a loss function. 
21
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Cross Validation
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Predictor Selection: Cross Validation

Question: What is the right ratio of train/validate/test, how do I choose K?

Question: What is the difference in multiple predictors and polynomial 
regression in model selection?

We can frame the problem of degree selection for polynomial models as a 
predictor selection problem:  

which of the predictors {𝑥, 𝑥F, … , 𝑥G}, should we select for modeling?
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kNN Revisited

Recall our first simple, intuitive, non-parametric model for regression - the 
kNN model. We saw that it is vitally important to select an appropriate k for 
the data.

If the k is too small then the model is very sensitive to noise (since a new 
prediction is based on very few observed neighbors), and if the k is too large, 
the model tends towards making constant predictions.
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kNN Revisited
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kNN Revisited

Recall our first simple, intuitive, non-parametric model for regression - the 
kNN model. We saw that it is vitally important to select an appropriate k for 
the data.

If the k is too small then the model is very sensitive to noise (since a new 
prediction is based on very few observed neighbors), and if the k is too large, 
the model tends towards making constant predictions.

A principled way to choose k is through K-fold cross validation.
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K-Fold with k=100 
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K-fold with k=100 
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Bias vs Variance
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Bias vs Variance
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Bias vs Variance
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Bias vs Variance
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Linear models: 20 data points per line 2000 simulations
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Bias vs Variance
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Bias vs Variance
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Bias vs Variance
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Poly 10 degree models : 20 data points per line 2000 simulations
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Spaghetti plot
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Bias vs Variance

Left: 2000 best fit straight lines, each fitted on a different 20 point 
training set. 

Right: Best-fit models using degree 10 polynomial
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Bias vs Variance

Left: Linear regression coefficients

Right: Poly regression of order 10 coefficients
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Regularization: LASSO and Ridge
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Regularization: An Overview

The idea of regularization revolves around modifying the loss function L; 
in particular, we add a regularization term that penalizes some specified 
properties of the model parameters

where 𝜆 is a scalar that gives the weight (or importance) of the 
regularization term.

Fitting the model using the modified loss function Lreg would result in 
model parameters with desirable properties (specified by R).

Lreg(�) = L(�) + �R(�),
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LASSO Regression

Since we wish to discourage extreme values in model parameter, we need 
to choose a regularization term that penalizes parameter magnitudes. For 
our loss function, we will again use MSE.

Together our regularized loss function is:

Note that              is the l1 norm of the vector b

LLASSO(�) =
1

n

nX

i=1

|yi � ���>xxxi|2 + �
JX

j=1

|�j |.

JX

j=1

|�j |

JX

j=1

|�j | = k���k1
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LASSO Regression

Hence, we often say that LLASSO is the loss function for l1 regularization.

Finding the model parameters bLASSO that minimize the l1 regularized 
loss function is called LASSO regression.
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Ridge Regression

Alternatively, we can choose a regularization term that penalizes the 
squares of the parameter magnitudes. Then, our regularized loss function 
is:

Note that               is the l2 norm of the vector b

LRidge(�) =
1

n

nX

i=1

|yi � ���>xxxi|2 + �
JX

j=1

�2
j .

JX

j=1

|�j |2

JX

j=1

�2
j = k���k22
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Ridge Regression

Hence, we often say that Lridge is the loss function for l2 regularization.

Finding the model parameters bridge that minimize the l2 regularized loss 
function is called ridge regression.

48



CS109A, PROTOPAPAS, RADER

Choosing l

In both ridge and LASSO regression, we see that the larger our choice of 
the regularization parameter l, the more heavily we penalize large 
values in b,

• If l is close to zero, we recover the MSE, i.e. ridge and LASSO regression 
is just ordinary regression.

• If l is sufficiently large, the MSE term in the regularized loss function 
will be insignificant and the regularization term will force bridge and 
bLASSO to be close to zero.

To avoid ad-hoc choices, we should select l using cross-validation.
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Ridge - Computational complexity

Solution to ridge regression:

The solution of the Ridge/Lasso regression involves three steps

• Select l 

• Find the minimum of the ridge/Lasso regression cost function (using 
linear algebra) as with the multiple regression and record the  R2 on 
the test set. 

• Find the l that gives the largest R2

� = (XTX + �I)�1XTY
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C

C

The Geometry of Regularization (LASSO)
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1
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The Geometry of Regularization (LASSO)
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The Geometry of Regularization (Ridge)

𝐿c'def 𝜷 =
1
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The Geometry of Regularization (Ridge)
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The Geometry of Regularization
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Ridge regularization with validation only: step by step

1. split data into { 𝑋, 𝑌 hij'%, 𝑋, 𝑌 kjl'djh'm%, 𝑋, 𝑌 hfnh}	

2. for 𝜆	in	 𝜆G'%, … 𝜆Gjo :	

A. determine the 𝛽 that minimizes the 𝐿i'def, 
𝛽2c'def 𝜆 = XqX + 𝜆𝐼 *"𝑋Q𝑌 , using the train data.

B. record 𝐿[K\ 𝜆 using validation data.

3. select the 𝜆	that minimizes the loss on the validation data, 

																			𝜆i'def = argmins	𝐿[K\ 𝜆

1. Refit the model using both train and validation data, 
{ 𝑋, 𝑌 hij'%, 𝑋, 𝑌 kjl'djh'm% },  resulting to 	𝛽2i'def 𝜆i'def

2. report MSE or R2 on 𝑋, 𝑌 hfnh given the 𝛽2i'def 𝜆i'def
56
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Ridge regularization with validation only: step by step
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Lasso regularization with validation only: step by step

1. split data into { 𝑋, 𝑌 hij'%, 𝑋, 𝑌 kjl'djh'm%, 𝑋, 𝑌 hfnh}	

2. for 𝜆	in	 𝜆G'%, … 𝜆Gjo :	

A. determine the 𝛽 that minimizes the 𝐿ljnnm, 𝛽2ljnnm 𝜆 , 
using the train data. This is done using a solver. 

B. record 𝐿[K\ 𝜆 using validation data

3. select the 𝜆	that minimizes the loss on the validation data,                  
											𝜆ljnnm= argmins	𝐿[K\ 𝜆

4. Refit the model using both train and validation data, 
{ 𝑋, 𝑌 hij'%, 𝑋, 𝑌 kjl'djh'm% },  resulting to 𝛽2ljnnm 𝜆ljnnm

5. report MSE or R2 on 𝑋, 𝑌 hfnh given the 𝛽2ljnnm 𝜆ljnnm
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Ridge regularization with CV: step by step

1. remove 𝑋, 𝑌 hfnh from data

2. split the rest of data into K folds, { 𝑋, 𝑌 hij'%
*t , 𝑋, 𝑌 kjl

t }	
3. for k in 1,… , 𝐾 	

1. for 𝜆	in	 𝜆u, … , 𝜆% :	

A. determine the 𝛽 that minimizes the 𝐿i'def, 𝛽2i'def 𝜆, 𝑘 = XqX + 𝜆𝐼 *"𝑋Q𝑌 , 
using the train data of the fold, 𝑋, 𝑌 hij'%

*t .

B. record 𝐿[K\ 𝜆, 𝑘 using the validation data of the fold 𝑋, 𝑌 kjl
t

At this point we have a 2-D matrix, rows are for different k, and 
columns are for different 𝜆 values. 

4. Average the 𝐿[K\(𝜆, 𝑘) for each 𝜆, 𝐿w[K\ 𝜆 .  
5. Find the 𝜆 that minimizes the 𝐿w[K\ 𝜆 ,  resulting to 𝜆i'def.
6. Refit the model using the full training data, { 𝑋, 𝑌 hij'%, 𝑋, 𝑌 kjl },  resulting 

to 	𝛽2	i'def 𝜆i'def
7. report MSE or R2 on 𝑋, 𝑌 hfnh given the 𝛽2i'def 𝜆i'def
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Ridge regularization with validation only: step by step
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Variable Selection as Regularization

Since LASSO regression tend to produce zero estimates for a number of 
model parameters - we say that LASSO solutions are sparse - we consider 
LASSO to be a method for variable selection.

Many prefer using LASSO for variable selection (as well as for suppressing 
extreme parameter values) rather than stepwise selection, as LASSO 
avoids the statistic problems that arises in stepwise selection.

Question: What are the pros and cons of the two approaches? 
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Behind Ordinary Least Squares, AIC, BIC
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Likelihood Functions

Recall that our statistical model for linear regression in matrix notation is:

It is standard to suppose that 𝜖~𝑁 0, 𝜎F .	In fact, in many analyses we have 
been making this assumption. Then,

Question: Can you see why?

Note that 𝑁 𝑥𝛽, 𝜎F is naturally a function of the model parameters 𝛽, since 
the data is fixed. 
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Y = X� + ✏

y|�, x, ✏ ⇠ N (x�,�2)
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Likelihood Functions

We call:

the likelihood function, as it gives the likelihood of the observed data for 
a chosen model 𝜷.

64

L(�) = N (x�,�2)
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Maximum Likelihood Estimators

Once we have a likelihood function, ℒ(𝜷), we have strong incentive to 
seek values of to maximize ℒ.

Can you see why?

The model parameters that maximizes ℒ are called maximum 
likelihood estimators (MLE) and are denoted:

The model constructed with MLE parameters assigns the highest 
likelihood to the observed data.

65

���MLE = argmax
���

L(���)
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Maximum Likelihood Estimators

But how does one maximize a likelihood function?

Fix a set of n observations of J predictors, X, and a set of corresponding 
response values, Y; consider a linear model 𝒀 = 𝑿𝜷 + 𝜖.

If we assume that 𝜖 ∼ 𝛮(0, 𝜎F) then the likelihood for each observation 
is

and the likelihood for the entire set of data is

66

Li(���) = N (yi;���
>xxxi,�

2)

L(���) =
nY

i=1

N (yi;���
>xxxi,�
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Maximum Likelihood Estimators

Through some algebra, we can show that maximizing ℒ(𝜷), is equivalent 
to minimizing MSE:

Minimizing MSE or RSS is called ordinary least squares.
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���MLE = argmax
���

L(���) = argmin
���

1
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nX
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