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Announcements

Section: Friday 1:30-2:45pm : @ MD 123 (only this Friday)

A-section: Today: 5:00-6:30pm @60 Oxford str. Room 330

Mixer: Today 7:30pm @IACS lobby 

Regrade requests:

HW1 grades are released. For regrade requests email the helpline with 
subject line Regrade HW1: Grader=johnsmith within 48 hours of the 
grade release.
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Lecture Outline
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Multiple Linear Regression: 
• Collinearity

• Hypothesis Testing

• Categorical Predictors

• Interaction Terms

Polynomial Regression

Generalized Polynomial Regression

Overfitting

Model Selection 
• Exhaustive Selection

• Forward/Backward

AIC

Cross Validation

MLE
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Multiple Linear Regression
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Multiple Linear Regression 

If you have to guess someone's height, would you rather be told

• Their weight, only

• Their weight and gender

• Their weight, gender, and income

• Their weight, gender, income, and favorite number

Of course, you'd always want as much data about a person as possible. 
Even though height and favorite number may not be strongly related, at 
worst you could just ignore the information on favorite number. We want 
our models to be able to take in lots of data as they make their 
predictions.
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Response vs. Predictor Variables

TV radio newspaper sales

230.1 37.8 69.2 22.1

44.5 39.3 45.1 10.4

17.2 45.9 69.3 9.3

151.5 41.3 58.5 18.5

180.8 10.8 58.4 12.9
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Multilinear Models

In practice, it is unlikely that any response variable Y depends solely on 
one predictor x. Rather, we expect that is a function of multiple 
predictors 𝑓(𝑋$,… , 𝑋'). Using the notation we introduced last lecture, 

𝑌 = 𝑦$,… , 𝑦,,    𝑋 = 𝑋$,… , 𝑋'	and	𝑋. = 𝑥$., … , 𝑥0., … , 𝑥,.

In this case, we can still assume a simple form for 𝑓	-a multilinear form:

Hence, 𝑓1, has the form

Y = f(X1, . . . , XJ) + ✏ = �0 + �1X1 + �2X2 + . . .+ �JXJ + ✏

Ŷ = f̂(X1, . . . , XJ) + ✏ = �̂0 + �̂1X1 + �̂2X2 + . . .+ �̂JXJ + ✏

6



CS109A, PROTOPAPAS, RADER

Multiple Linear Regression

Again, to fit this model means to compute 𝛽13, … , 𝛽1' or to minimize a loss 
function; we will again choose the MSE as our loss function. 

Given a set of observations, 

the data and the model can be expressed in vector notation, 

{(x1,1, . . . , x1,J , y1), . . . (xn,1, . . . , xn,J , yn)},
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Multiple Linear Regression

The model takes a simple algebraic form:

Thus, the MSE can be expressed in vector notation as

Minimizing the MSE using vector calculus yields, 

Y = X� + ✏

MSE(�) =
1

n
kY � X�k2

b��� =
�
X>X

��1
X>Y = argmin

���
MSE(���).
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Collinearity

Collinearity  refers to the case in which two or more predictors are 
correlated (related). 

We will re-visit collinearity in the next lectures, but for now we want to 
examine how does collinearity affects our confidence on the coefficients 
and consequently on the importance of those coefficients. 

First let’s look some examples: 

9



CS109A, PROTOPAPAS, RADER

Collinearity

10

Coef. Std.Err. t P>|t| [0.025 0.975]

11.55 0.576 20.036 1.628e-49 10.414 12.688

0.074 0.014 5.134 6.734e-07 0.0456 0.102

Coef. Std.Err. t P>|t| [0.025 0.975]

6.679 0.478 13.957 2.804e-31 5.735 7.622

0.048 0.0027 17.303 1.802e-41 0.042 0.053

Coef. Std.Err. t P>|t| [0.025 0.975]

9.567 0.553 17.279 2.133e-41 8.475 10.659

0.195 0.020 9.429 1.134e-17 0.154 0.236

Coef. Std.Err. t P>|t| [0.025 0.975]

𝛽3 2.602 0.332 7.820 3.176e-13 1.945 3.258

𝛽45 0.046 0.0015 29.887 6.314e-75 0.043 0.049

𝛽6789: 0.175 0.0094 18.576 4.297e-45 0.156 0.194

𝛽;<=> 0.013 0.028 2.338 0.0203 0.008 0.035

Three individual models One model
TV

RADIO

NEWS
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Collinearity

Collinearity  refers to the case in which two or more predictors are 
correlated (related). 

We will re-visit collinearity in the next lectures, but for now we want to 
examine how does collinearity affects our confidence on the coefficients 
and consequently on the importance of those coefficients. 

Assuming uncorrelated noise then we can show: 
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Finding Significant Predictors: Hypothesis Testing

For checking the significance of linear regression coefficients:

1.we set up our hypotheses 𝐻3: 

2. we choose the F-stat to evaluate the null hypothesis, 

H0 : �0 = �1 = . . . = �J = 0 (Null)

H1 : �j 6= 0, for at least one j (Alternative)

F =
explained variance

unexplained variance
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Finding Significant Predictors: Hypothesis Testing

3. we can compute the F-stat for linear regression models by

4. If 𝐹 = 1 we consider this evidence for 𝐻3; if 𝐹 > 1, we consider this 
evidence against 𝐻3. 
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Qualitative Predictors

So far, we have assumed that all variables are quantitative. But in 
practice,  often some predictors are qualitative. 

Example:  The Credit data set contains information about balance, age, 
cards, education, income, limit , and rating for a number of potential 
customers.

Income Limit Rating Cards Age Education Gender Student Married Ethnicity Balance

14.890 3606 283 2 34 11 Male No Yes Caucasian 333

106.02 6645 483 3 82 15 Female Yes Yes Asian 903

104.59 7075 514 4 71 11 Male No No Asian 580

148.92 9504 681 3 36 11 Female No No Asian 964

55.882 4897 357 2 68 16 Male No Yes Caucasian 331
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Qualitative Predictors

If the predictor takes only two values, then we create an indicator or 
dummy variable that takes on two possible numerical values.

For example for the gender, we create a new variable:

We then use this variable as a predictor in the regression equation. 

xi =

⇢
1 if i th person is female
0 if i th person is male

yi = �0 + �1xi + ✏i =

⇢
�0 + �1 + ✏i if i th person is female
�0 + ✏i if i th person is male
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Qualitative Predictors

Question: What is interpretation of 𝛽3 and 𝛽$? 

• 𝛽3 is the average credit card balance among males, 

• 𝛽3 + 𝛽$	 is the average credit card balance among females, 

• and 𝛽$ the average difference in credit card balance between females 
and males.

Exercise: Calculate 𝛽3 and 𝛽$ for the Credit data. 

You should find 𝛽3~$509, 𝛽$~$19
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More than two levels: One hot encoding

Often, the qualitative predictor takes more than two values (e.g. ethnicity 
in the credit data). 

In this situation, a single dummy variable cannot represent all possible 
values. 

We create additional dummy variable as:  

xi,2 =

⇢
1 if i th person is Caucasian
0 if i th person is not Caucasian

xi,1 =

⇢
1 if i th person is Asian
0 if i th person is not Asian

17
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More than two levels: One hot encoding

We then use these variables as predictors, the regression 
equation becomes:

Question: What is the interpretation of 𝛽3, 𝛽$, 𝛽I

yi = �0 + �1xi,1 + �2xi,2 + ✏i =

8
<

:

�0 + �1 + ✏i if i th person is Asian
�0 + �2 + ✏i if i th person is Caucasian
�0 + ✏i if i th person is AfricanAmerican
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Beyond linearity

In the Advertising data, we assumed that the effect on sales of 
increasing one advertising medium is independent of the amount spent 
on the other media. 

If we assume linear model then the average effect on sales of a one-unit 
increase in TV is always 𝛽$, regardless of the amount spent on radio.

Synergy effect or interaction effect states that when an increase on the 
radio budget affects the effectiveness of the TV spending on sales. 
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Beyond linearity

We change

To  
Y = �0 + �1X1 + �2X2 + �3X1X2 + ✏

Y = �0 + �1X1 + �2X2 + ✏

20
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Question: Explain the plots above? 

21
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Predictors predictors predictors

We have a lot predictors!  

Is it a problem? 

Yes: Computational Cost

Yes: Overfitting 

Wait there is more …

22
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Polynomial Regression

23
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Polynomial Regression

The simplest non-linear model we can consider, for a response Y and a 
predictor X, is a polynomial model of degree M,

Just as in the case of linear regression with cross terms, polynomial 
regression is a special case of linear regression - we treat each 𝑥J as a 
separate predictor. Thus, we can write:

y = �0 + �1x+ �2x
2 + . . .+ �MxM + ✏.

Y =

0

B@
y1
...
yn

1
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0
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...
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n
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Polynomial Regression

Again, minimizing the MSE using vector calculus yields,

b��� = argmin
���

MSE(���) =
�
X>X

��1
X>Y.
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Generalized Polynomial Regression

We can generalize polynomial models:

1. consider polynomial models with multiple predictors 𝑋$,… , 𝑋. :

2. consider polynomial models with multiple predictors 𝑋$, 𝑋I and cross 
terms:

26

y =�0 + �1x1 + . . .+ �MxM
1

+ �1+Mx2 + . . .+ �2MxM
2

+ �1+2M (x1x2) + . . .+ �3M (x1x2)
M

y =�0 + �1x1 + . . .+ �MxM
1

+ �M+1x2 + . . .+ �2MxM
2

+ . . .

+ �M(J�1)+1xJ + . . .+ �MJx
M
J
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Generalized Polynomial Regression

In each case, we consider each term 𝑥.J,		and each cross term 𝑥$𝑥I,	as a 
unique predictor and apply linear regression:

27

b��� = argmin
���

MSE(���) =
�
X>X

��1
X>Y.
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Model Selection

Model selection is the application of a principled method to determine the 
complexity of the model, e.g. choosing a subset of predictors, choosing the 
degree of the polynomial model etc.

A strong motivation for performing model selection is to avoid overfitting, 
which we can happen when: 

• there are too many predictors:

• the feature space has high dimensionality

• the polynomial degree is too high

• too many cross terms are considered

• the coefficients values are too extreme

28
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Overfitting
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Overfitting
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Overfitting
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Overfitting
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Overfitting
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Overfitting
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Overfitting

Definition

Overfitting is the phenomenon where  the model is 
unnecessarily complex, in the sense that portions of the 
model captures the random noise in the observation, rather 
than the relationship between predictor(s) and response. 

Overfitting causes the model to lose predictive power on new 
data.

35
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Overfitting

As we saw, overfitting can happen when:
• there are too many predictors:

• the feature space has high dimensionality
• the polynomial degree is too high
• too many cross terms are considered

• the coefficients values are too extreme

A sign of overfitting may be a high training 𝑅I or low MSE and 
unexpectedly poor testing performance. 

Note: There is no 100% accurate test for overfitting and there is not a 
100% effective way to prevent it. Rather, we may use multiple 
techniques in combination to prevent overfitting and various methods 
to detect it.
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Model Selection
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Exhaustive Selection

To find the optimal subset of predictors for modeling a response 
variable, we can: 

• compute all possible subsets of {𝑋$, … , 𝑋'}

• evaluate all the models constructed from all the subsets of {𝑋$, … , 𝑋'}, 

• find the model that optimizes some metric. 

While straightforward, exhaustive selection is computationally infeasible, 
since {𝑋$, … , 𝑋'}	 has 2' number of possible subsets. 

Instead, we will consider methods that iteratively build the optimal set 
of predictors. 

39
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Model selection

Model selection is the application of a principled method to determine 
the complexity of the model, e.g. choosing a subset of predictors, 
choosing the degree of the polynomial model etc. 

Model selection typically consists of the following steps:

1. split the training set into two subsets: training and validation 

2. multiple models (e.g. polynomial models with different degrees) are 
fitted on the training set; each model is evaluated on the validation 
set

3. the model with the best validation performance is selected 

4. the selected model is evaluated one last time on the testing set 

40
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Variable Selection: Forward 

In forward selection, we find an ‘optimal’ set of predictors by iterative 
building up our set. 

1. Start with the empty set 𝑃3, construct the null model 𝑀3. 

2. For 𝑘 = 1… 𝐽:
A. Let 𝑀TU$	be the model constructed from the best set of 𝑘 − 1

predictors, 𝑃TU$. 

B. Select the predictor 𝑋,W, not in 𝑃TU$, so that the model constructed 
from 𝑃T = 𝑋,T⋃𝑃TU$	 optimizes a fixed metric (this can be p-value, 
F-stat; validation MSE, 𝑅I; or AIC/BIC on training set). 

C. Let 𝑀T denote the model constructed from the optimal Pk. 

3. Select the model 𝑀 amongst {𝑀3,𝑀$,… ,𝑀'} that optimizes a fixed 
metric (this can be validation MSE, 𝑅I; or AIC/BIC on training set). 

4.   Evaluate the final model 𝑀	on the testing set. 
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Stepwise Variable Selection Computational Complexity

How many models did we evaluate?

• 1st step, J Models

• 2nd step, J-1 Models (add 1 predictor out of J-1 possible)

• 3rd step, J-2 Models (add 1 predictor out of J-2 possible)

• …

42
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AIC and BIC – value of training data

43
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AIC and BIC

In the absence of training data (we may not want to use valuable data 
for validation)

We’ve mentioned using AIC/BIC to evaluate the explanatory powers of 
models.  The following formulae can be used to calculate these criteria:

where J is the number of predictors in model.

Intuitively, AIC/BIC is a loss function that depends both on the predictive 
error, MSE, and the complexity of the model. We see that we prefer a 
model with few parameters and low MSE.

But why do the formulae look this way - what is the justification? We will cover all that 
in A-sec2 today

AIC ⇡ 2n ln(MSE) + 2J

BIC ⇡ 2n ln(MSE) + 2J lnn
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Cross Validation
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Cross Validation
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Cross Validation
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Cross Validation

48

Linear

Quadratic
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Validation

49



CS109A, PROTOPAPAS, RADER

Cross Validation: Motivation 

Using a single validation set to select amongst multiple models can be 
problematic - there is the possibility of overfitting to the validation 
set.

One solution to the problems raised by using a single validation set is to 
evaluate each model on multiple validation sets and average the 
validation performance. 

One can randomly split the training set into training and validation 
multiple times but randomly creating these sets can create the scenario 
where important features of the data never appear in our random draws.

50
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Leave-One-Out

Given a data set 𝑋$,… , 𝑋, , where each 𝑋$,… , 𝑋, contains J features. 

To ensure that every observation in the dataset is included in at least one 
training set and at least one validation set, we create training/validation splits 
using the leave one out method: 

• validation set: {𝑋0}	
• training set: 𝑋U$ = {𝑋$,… , 𝑋0U$, 𝑋0Y$, … , 𝑋,}		

for 𝑖 = 1,… , 𝑛:	

We fit the model on each training set, denoted 𝑓1\]^,	and evaluate it on the 
corresponding validation set, 𝑓1\]^	(𝑋0). 

The cross validation score is the performance of the model averaged across all 
validation sets: 

where L is a loss function. 
51

𝐶𝑉 Model =
1
𝑛
f𝐿(𝑓1\]^	(𝑋0))	
,

0h$
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K-Fold Cross Validation

Rather than creating n number of training/validation splits, each time leaving 
one data point for the validation set, we can include more data in the validation 
set using K-fold validation: 

• split the data into K uniformly sized chunks, {𝐶$, … , 𝐶i}

• we create K number of training/validation splits, using one of the K 
chunks for validation and the rest for training. 

We fit the model on each training set, denoted 𝑓1j]^ , and evaluate it on the 
corresponding validation set, 𝑓1j]^	(𝐶0). The cross validation is the performance of 
the model averaged across all validation sets:

where L is a loss function. 
52

𝐶𝑉 Model =
1
𝐾
f𝐿(𝑓1j]^	(𝐶0))	
i

0h$
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Cross Validation
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Predictor Selection: Cross Validation

Question: What is the right ratio of train/validate/test, how do I choose K?

Question: What is the difference in multiple predictors and polynomial 
regression in model selection?

We can frame the problem of degree selection for polynomial models as a 
predictor selection problem:  

which of the predictors {𝑥, 𝑥I, … , 𝑥J}, should we select for modeling?
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kNN Revisited

56
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kNN Revisited

Recall our first simple, intuitive, non-parametric model for regression - the 
kNN model. We saw that it is vitally important to select an appropriate k for 
the data.

If the k is too small then the model is very sensitive to noise (since a new 
prediction is based on very few observed neighbors), and if the k is too large, 
the model tends towards making constant predictions.

A principled way to choose k is through K-fold cross validation.
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Behind Ordinary Lease Squares, AIC, BIC
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Likelihood Functions

Recall that our statistical model for linear regression in matrix notation is:

It is standard to suppose that 𝜖~𝑁 0, 𝜎I .	In fact, in many analyses we have 
been making this assumption. Then,

Question: Can you see why?

Note that 𝑁 𝑥𝛽, 𝜎I is naturally a function of the model parameters 𝛽, since 
the data is fixed. 

Y = X� + ✏

y|�, x, ✏ ⇠ N (x�,�2)
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Likelihood Functions

We call:

the likelihood function, as it gives the likelihood of the observed data for 
a chosen model 𝜷.

L(�) = N (x�,�2)
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Maximum Likelihood Estimators

Once we have a likelihood function, ℒ(𝜷), we have strong incentive to 
seek values of to maximize ℒ.

Can you see why?

The model parameters that maximizes ℒ are called maximum 
likelihood estimators (MLE) and are denoted:

The model constructed with MLE parameters assigns the highest 
likelihood to the observed data.

���MLE = argmax
���

L(���)
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Maximum Likelihood Estimators

But how does one maximize a likelihood function?

Fix a set of n observations of J predictors, X, and a set of corresponding 
response values, Y; consider a linear model 𝒀 = 𝑿𝜷 + 𝜖.

If we assume that 𝜖 ∼ 𝛮(0, 𝜎I) then the likelihood for each observation 
is

and the likelihood for the entire set of data is

Li(���) = N (yi;���
>xxxi,�

2)

L(���) =
nY

i=1

N (yi;���
>xxxi,�

2)
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Maximum Likelihood Estimators

Through some algebra, we can show that maximizing ℒ(𝜷), is equivalent 
to minimizing MSE:

Minimizing MSE or RSS is called ordinary least squares.

���MLE = argmax
���

L(���) = argmin
���

1

n

nX

i=1

|yi � ���>xxxi|2 = argmin
���

MSE
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Information Criteria Revisited

Using the likelihood function, we can reformulate the information 
criteria metrics for model fitness in very intuitive terms.

For both AIC and BIC, we consider the likelihood of the data under the 
MLE model against the number of explanatory variables used in the 
model:

where g is a function of the number of predictors J.  Individually, 

In the formulae we’d been using for AIC/BIC, we approximate ℒ(𝜷), using 
the MSE. 

g(J)� L(���MLE)
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