
CS109A Introduction to Data Science
Pavlos Protopapas and Kevin Rader

Lecture 20: Support Vector Machines (SVMs)

CS109A, PROTOPAPAS, RADER

Outline

• Classifying Linear Separable Data

• Classifying Linear Non-Separable Data

• Kernel Trick

Text Reading: Ch. 9, p. 337-356

2

CS109A, PROTOPAPAS, RADER

Decision Boundaries Revisited

In logistic regression, we learn a decision boundary that separates the training
classes in the feature space.
When the data can be perfectly separated by a linear boundary, we call the data
linearly separable.
In this case, multiple decision boundaries can fit the data. How do we choose the
best?

Question: What happens to our logistic regression model when training on
linearly separable datasets?

3

CS109A, PROTOPAPAS, RADER

Decision Boundaries Revisited (cont.)

Constraints on the decision boundary:
• In logistic regression, we typically learn an ℓ1 or ℓ2 regularized

model.
• So, when the data is linearly separable, we choose a model with

the ‘smallest coefficients’ that still separate the classes.
• The purpose of regularization is to prevent overfitting.

4

CS109A, PROTOPAPAS, RADER

Decision Boundaries Revisited (cont.)

Constraints on the decision boundary:
• We can consider alternative constraints that prevent overfitting.
• For example, we may prefer a decision boundary that does not

‘favor’ any class (esp. when the classes are roughly equally
populous).

• Geometrically, this means choosing a boundary that maximizes the
distance or margin between the boundary and both classes.

5

CS109A, PROTOPAPAS, RADER

Illustration of an SVM

6

CS109A, PROTOPAPAS, RADER

Geometry of Decision Boundaries

Recall that the decision boundary is defined by some equation in
terms of the predictors. A linear boundary is defined by:

w⊤x + b = 0 (General equation of a hyperplane)
Recall that the non-constant coefficients, w, represent a normal
vector, pointing orthogonally away from the plane

7

CS109A, PROTOPAPAS, RADER

Geometry of Decision Boundaries (cont.)

Now, using some geometry, we can compute the distance between
any point to the decision boundary using w and b.

The signed distance from a point ! ∈ ℝ$ to the decision boundary is

(Euclidean Distance Formula)

8

CS109A, PROTOPAPAS, RADER

Maximizing Margins

Now we can formulate our goal - find a decision boundary that
maximizes the distance to both classes - as an optimization problem:

where M is a real number representing the width of the ‘margin’ and
yi = ±1. The inequalities |D(xn)| ≥ M are called constraints.
The constrained optimization problem as present here looks tricky.
Let’s simplify it with a little geometric intuition.

9

CS109A, PROTOPAPAS, RADER

Maximizing Margins (cont.)

Notice that maximizing the distance of all points to the decision

boundary, is exactly the same as maximizing the distance to the

closest points.

The points closest to the decision boundary are called support
vectors.

For any plane, we can always scale the equation:

w⊤x + b = 0

so that the support vectors lie on the planes:

w⊤x + b = ±1,

depending on their classes.

10

CS109A, PROTOPAPAS, RADER

Maximizing Margins Illustration

For points on planes w⊤x + b = ±1, their distance to the decision
boundary is ±1/∥w∥.

So we can define the margin of a decision boundary as the distance to
its support vectors, m = 2/∥w∥.

11

CS109A, PROTOPAPAS, RADER

Support Vector Classifier: Hard Margin

Finally, we can reformulate our optimization problem - find a decision

boundary that maximizes the distance to both classes - as the

maximization of the margin, m, while maintaining zero
misclassifications,

The classifier learned by solving this problem is called hard margin
support vector classification.

Often SVC is presented as a minimization problem:

12

CS109A, PROTOPAPAS, RADER

SVC and Convex Optimization

As a convex optimization problem SVC has been extensively studied
and can be solved by a variety of algorithms:
• (Stochastic) libLinear

Fast convergence, moderate computational cost
• (Greedy) libSVM

Fast convergence, moderate computational cost
• (Stochastic) Stochastic Gradient Descent Slow convergence, low

computational cost per iteration
• (Greedy) Quasi-Newton Method

Very fast convergence, high computational cost

13

CS109A, PROTOPAPAS, RADER

Classifying Linear Non-Separable Data

14

CS109A, PROTOPAPAS, RADER

Geometry of Data

Maximizing the margin is a good idea as long as we assume that the
underlying classes are linear separable and that the data is noise free.
If data is noisy, we might be sacrificing generalizability in order to minimize
classification error with a very narrow margin:

With every decision boundary, there is a trade-off between maximizing
margin and minimizing the error.

15

CS109A, PROTOPAPAS, RADER

Support Vector Classifier: Soft Margin

Since we want to balance maximizing the margin and minimizing the
error, we want to use an objective function that takes both into
account:

where ! is an intensity parameter.

So just how should we compute the error for a given decision
boundary?

16

CS109A, PROTOPAPAS, RADER

Support Vector Classifier: Soft Margin (cont.)

We want to express the error as a function of distance to the decision
boundary.

Recall that the support vectors have distance 1/∥w∥ to the decision
boundary. We want to penalize two types of ‘errors’

• (margin violation) points that are on the correct side of the
boundary but are inside the margin. They have distance " /∥w∥,
where 0 < " < 1 .

• (misclassification) points that are on the wrong side of the
boundary. They have distance "/∥w∥, where " > 1.

Specifying a nonnegative quantity for "' is equivalent to quantifying
the error on the point ('.

17

CS109A, PROTOPAPAS, RADER

Support Vector Classifier: Soft Margin Illustration

18

CS109A, PROTOPAPAS, RADER

Support Vector Classifier: Soft Margin (cont.)

Formally, we incorporate error terms !" ’s into our optimization
problem by:

The solution to this problem is called soft margin support vector
classification or simply support vector classification.

19

CS109A, PROTOPAPAS, RADER

Tuning SVC

Choosing different values for ! in

will give us different classifiers. In general,
• small ! penalizes errors less and hence the classifier will have a large

margin
• large ! penalizes errors more and hence the classifier will accept narrow

margins to improve classification
• setting ! = ∞ produces the hard margin solution

20

CS109A, PROTOPAPAS, RADER

Decision Boundaries and Support Vectors

21

Recall how the error terms !"’s were defined: the points where !" = 0 are
precisely the support vectors

CS109A, PROTOPAPAS, RADER

Decision Boundaries and Support Vectors

22

Thus to re-construct the decision boundary, only the support vectors are
needed!

CS109A, PROTOPAPAS, RADER

Decision Boundaries and Support Vectors

23

The decision boundary of an SVC is given by

where !"# and the set of support vectors are found by solving the
optimization problem.

• To classify a test point xtest, we predict

CS109A, PROTOPAPAS, RADER

SVC as Optimization

With the help of geometry, we translated our wish list into an
optimization problem

where !" quantifies the error at #".
The SVC optimization problem is often solved in an alternate form
(the dual form):

Later we’ll see that this alternate form allows us to use SVC with non-
linear boundaries.

24

CS109A, PROTOPAPAS, RADER

Extension to Non-linear Boundaries

25

CS109A, PROTOPAPAS, RADER

Polynomial Regression: Two Perspectives

Given a training set:

with a single real-valued predictor, we can view fitting a 2nd degree
polynomial model:

on the data as the process of finding the best quadratic curve that fits
the data. But in practice, we first expand the feature dimension of the
training set

and train a linear model on the expanded data

26

CS109A, PROTOPAPAS, RADER

Transforming the Data

The key observation is that training a polynomial model is just training
a linear model on data with transformed predictors.

In our previous example, transforming the data to fit a 2nd degree
polynomial model requires a map:

where ℝ called the input space, ℝ" is called the feature space.

While the response may not have a linear correlation in the input
space ℝ, it may have one in the feature space ℝ".

27

CS109A, PROTOPAPAS, RADER

SVC with Non-Linear Decision Boundaries

The same insight applies to classification: while the response may not
be linear separable in the input space, it may be in a feature space
after a fancy transformation:

28

CS109A, PROTOPAPAS, RADER

SVC with Non-Linear Decision Boundaries (cont.)

The motto: instead of tweaking the definition of SVC to accommodate
non-linear decision boundaries, we map the data into a feature space
in which the classes are linearly separable (or nearly separable):

• Apply transform !:ℝ$ → ℝ$&on training data
'(→ !('()

where typically Jʹ is much larger than J.
• Train an SVC on the transformed data

{ ! ', , ., , ! '/ , ./ ,…, ! '0 , .0 }

29

CS109A, PROTOPAPAS, RADER

Inner Products

Since the feature space ℝ"# is potentially extremely high dimensional,
computing $ explicitly can be costly.

Instead, we note that computing $ is unnecessary. Recall that training
an SVC involves solving the optimization problem:

In the above, we are only interested in computing inner products
$ %& '$(%))in the feature space and not the quantities $(%&)
themselves.

30

CS109A, PROTOPAPAS, RADER

The Kernel Trick

The inner product between two vectors is a measure of the similarity
of the two vectors.

31

CS109A, PROTOPAPAS, RADER

The Kernel Trick (cont.)

For a choice of kernel K,

we train an SVC by solving

Computing !(#$, #&) can be done without computing the mappings
((#$), (#& .
This way of training a SVC in feature space without explicitly working
with the mapping (is called the kernel trick.

32

CS109A, PROTOPAPAS, RADER

Transforming Data: An Example

33

CS109A, PROTOPAPAS, RADER

Kernel Functions
Common kernel functions include:
• Polynomial Kernel (kernel=‘poly’)

where d is a hyperparameter.
• Radial Basis Function Kernel (kernel=‘rbf’)

where ! is a hyperparameter.
• Sigmoid Kernel (kernel=‘sigmoid’)

where " and # are hyperparameters.

34

CS109A, PROTOPAPAS, RADER

Happy Thanksgiving!

35

