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Outline

• Classifying Linear Separable Data 

• Classifying Linear Non-Separable Data 

• Kernel Trick

Text Reading: Ch. 9, p. 337-356
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Decision Boundaries Revisited 

In logistic regression, we learn a decision boundary that separates the training 
classes in the feature space. 
When the data can be perfectly separated by a linear boundary, we call the data 
linearly separable. 
In this case, multiple decision boundaries can fit the data. How do we choose the 
best? 

Question: What happens to our logistic regression model when training on 
linearly separable datasets? 
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Decision Boundaries Revisited (cont.)

Constraints on the decision boundary:
• In logistic regression, we typically learn an ℓ1 or ℓ2 regularized 

model. 
• So, when the data is linearly separable, we choose a model with 

the ‘smallest coefficients’ that still separate the classes. 
• The purpose of regularization is to prevent overfitting. 
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Decision Boundaries Revisited (cont.)

Constraints on the decision boundary: 
• We can consider alternative constraints that prevent overfitting. 
• For example, we may prefer a decision boundary that does not 

‘favor’ any class (esp. when the classes are roughly equally 
populous). 

• Geometrically, this means choosing a boundary that maximizes the 
distance or margin between the boundary and both classes. 
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Illustration of an SVM
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Geometry of Decision Boundaries 

Recall that the decision boundary is defined by some equation in 
terms of the predictors. A linear boundary is defined by: 

w⊤x + b = 0 (General equation of a hyperplane) 
Recall that the non-constant coefficients, w, represent a normal 
vector, pointing orthogonally away from the plane 
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Geometry of Decision Boundaries (cont.)

Now, using some geometry, we can compute the distance between 
any point to the decision boundary using w and b. 

The signed distance from a point ! ∈ ℝ$ to the decision boundary is 

(Euclidean Distance Formula)
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Maximizing Margins 

Now we can formulate our goal - find a decision boundary that 
maximizes the distance to both classes - as an optimization problem:

where M is a real number representing the width of the ‘margin’ and 
yi = ±1. The inequalities |D(xn)| ≥ M are called constraints. 
The constrained optimization problem as present here looks tricky. 
Let’s simplify it with a little geometric intuition. 
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Maximizing Margins (cont.) 

Notice that maximizing the distance of all points to the decision 

boundary, is exactly the same as maximizing the distance to the 

closest points. 

The points closest to the decision boundary are called support 
vectors. 

For any plane, we can always scale the equation: 

w⊤x + b = 0

so that the support vectors lie on the planes: 

w⊤x + b = ±1, 

depending on their classes. 
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Maximizing Margins Illustration

For points on planes w⊤x + b = ±1, their distance to the decision 
boundary is ±1/∥w∥.

So we can define the margin of a decision boundary as the distance to 
its support vectors, m = 2/∥w∥.
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Support Vector Classifier: Hard Margin 

Finally, we can reformulate our optimization problem - find a decision 

boundary that maximizes the distance to both classes - as the 

maximization of the margin, m, while maintaining zero 
misclassifications, 

The classifier learned by solving this problem is called hard margin 
support vector classification. 

Often SVC is presented as a minimization problem: 
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SVC and Convex Optimization 

As a convex optimization problem SVC has been extensively studied 
and can be solved by a variety of algorithms:
• (Stochastic) libLinear

Fast convergence, moderate computational cost 
• (Greedy) libSVM

Fast convergence, moderate computational cost 
• (Stochastic) Stochastic Gradient Descent Slow convergence, low 

computational cost per iteration 
• (Greedy) Quasi-Newton Method 

Very fast convergence, high computational cost 
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Classifying Linear Non-Separable Data 

14



CS109A, PROTOPAPAS, RADER

Geometry of Data

Maximizing the margin is a good idea as long as we assume that the 
underlying classes are linear separable and that the data is noise free. 
If data is noisy, we might be sacrificing generalizability in order to minimize 
classification error with a very narrow margin:

With every decision boundary, there is a trade-off between maximizing 
margin and minimizing the error. 
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Support Vector Classifier: Soft Margin 

Since we want to balance maximizing the margin and minimizing the 
error, we want to use an objective function that takes both into 
account: 

where ! is an intensity parameter. 

So just how should we compute the error for a given decision 
boundary? 
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Support Vector Classifier: Soft Margin (cont.) 

We want to express the error as a function of distance to the decision 
boundary. 

Recall that the support vectors have distance 1/∥w∥ to the decision 
boundary. We want to penalize two types of ‘errors’ 

• (margin violation) points that are on the correct side of the 
boundary but are inside the margin. They have distance " /∥w∥, 
where 0 < " < 1 . 

• (misclassification) points that are on the wrong side of the 
boundary. They have distance "/∥w∥, where " > 1. 

Specifying a nonnegative quantity for "' is equivalent to quantifying 
the error on the point ('. 
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Support Vector Classifier: Soft Margin Illustration 
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Support Vector Classifier: Soft Margin (cont.) 

Formally, we incorporate error terms !" ’s into our optimization 
problem by: 

The solution to this problem is called soft margin support vector 
classification or simply support vector classification. 
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Tuning SVC 

Choosing different values for ! in 

will give us different classifiers. In general, 
• small ! penalizes errors less and hence the classifier will have a large 

margin 
• large ! penalizes errors more and hence the classifier will accept narrow 

margins to improve classification 
• setting ! = ∞ produces the hard margin solution 
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Decision Boundaries and Support Vectors 
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Recall how the error terms !"’s were defined: the points where !" = 0 are 
precisely the support vectors 



CS109A, PROTOPAPAS, RADER

Decision Boundaries and Support Vectors 
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Thus to re-construct the decision boundary, only the support vectors are 
needed! 
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Decision Boundaries and Support Vectors 
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The decision boundary of an SVC is given by 

where !"# and the set of support vectors are found by solving the 
optimization problem. 

• To classify a test point xtest, we predict 
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SVC as Optimization 

With the help of geometry, we translated our wish list into an 
optimization problem 

where !" quantifies the error at  #".
The SVC optimization problem is often solved in an alternate form 
(the dual form): 

Later we’ll see that this alternate form allows us to use SVC with non-
linear boundaries. 

24



CS109A, PROTOPAPAS, RADER

Extension to Non-linear Boundaries 
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Polynomial Regression: Two Perspectives 

Given a training set: 

with a single real-valued predictor, we can view fitting a 2nd degree 
polynomial model:

on the data as the process of finding the best quadratic curve that fits 
the data. But in practice, we first expand the feature dimension of the 
training set 

and train a linear model on the expanded data 
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Transforming the Data 

The key observation is that training a polynomial model is just training 
a linear model on data with transformed predictors. 

In our previous example, transforming the data to fit a 2nd degree 
polynomial model requires a map: 

where ℝ called the input space, ℝ" is called the feature space. 

While the response may not have a linear correlation in the input 
space ℝ, it may have one in the feature space ℝ". 
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SVC with Non-Linear Decision Boundaries 

The same insight applies to classification: while the response may not 
be linear separable in the input space, it may be in a feature space 
after a fancy transformation: 
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SVC with Non-Linear Decision Boundaries (cont.)

The motto: instead of tweaking the definition of SVC to accommodate 
non-linear decision boundaries, we map the data into a feature space 
in which the classes are linearly separable (or nearly separable): 

• Apply transform !:ℝ$ → ℝ$&on training data 
'( → !('()

where typically Jʹ is much larger than J. 
• Train an SVC on the transformed data 

{ ! ', , ., , ! '/ , ./ ,…, ! '0 , .0 }
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Inner Products

Since the feature space ℝ"# is potentially extremely high dimensional, 
computing $ explicitly can be costly. 

Instead, we note that computing $ is unnecessary. Recall that training 
an SVC involves solving the optimization problem: 

In the above, we are only interested in computing inner products
$ %& '$(%))in the feature space and not the quantities $(%&)
themselves. 
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The Kernel Trick

The inner product between two vectors is a measure of the similarity 
of the two vectors. 
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The Kernel Trick (cont.)

For a choice of kernel K,

we train an SVC by solving 

Computing !(#$, #&) can be done without computing the mappings 
((#$), ( #& .
This way of training a SVC in feature space without explicitly working 
with the mapping ( is called the kernel trick. 
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Transforming Data: An Example 
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Kernel Functions
Common kernel functions include:
• Polynomial Kernel (kernel=‘poly’) 

where d is a hyperparameter.
• Radial Basis Function Kernel (kernel=‘rbf’) 

where ! is a hyperparameter.
• Sigmoid Kernel (kernel=‘sigmoid’) 

where " and # are hyperparameters. 

34



CS109A, PROTOPAPAS, RADER

Happy Thanksgiving!
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