
CS109A Introduction to Data Science
Pavlos Protopapas and Kevin Rader

Lecture 19 Additional Material: Optimization
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Outline

Optimization
• Challenges in Optimization

• Momentum

• Adaptive Learning Rate

• Parameter Initialization 

• Batch Normalization
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Learning vs. Optimization

Goal of learning: minimize generalization error

In practice, empirical risk minimization:
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Quantity	optimized	
different	from	the	quantity	

we	care	about

J(θ ) = E(x,y)~pdata L( f (x;θ ), y)[ ]

Ĵ(θ ) = 1
m

L
i=1

m

∑ ( f (x(i);θ ), y(i) )
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Batch vs. Stochastic Algorithms

Batch algorithms

• Optimize empirical risk using exact gradients

Stochastic algorithms

• Estimates gradient from a small random sample

4

Large	mini-batch:	gradient	computation	expensive

Small	mini-batch:	greater	variance	in	estimate,	
longer	steps	for	convergence

∇J(θ ) = E(x,y)~pdata ∇L( f (x;θ ), y)[ ]
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Critical Points

Points with zero gradient 

2nd-derivate (Hessian) determines curvature

5Goodfellow et	al.	(2016)
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Stochastic Gradient Descent

Take small steps in direction of negative gradient

Sample m examples from training set and compute:

Update parameters:
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In	practice:	shuffle
training	set	once	and	pass	
through	multiple	times

g = 1
m

∇L( f (x(i);θ ), y(i) )
i
∑

θ =θ −εkg
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Stochastic Gradient Descent

7

Oscillations	because	
updates	do	not	exploit	
curvature	information

Goodfellow et	al.	(2016)

J(θ )
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• Momentum
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Local Minima

9Goodfellow et	al.	(2016)
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Local Minima

Old view: local minima is major problem in neural network training

Recent view:  

• For sufficiently large neural networks, most local minima incur low cost

• Not important to find true global minimum

10
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Saddle Points

Recent studies indicate that in 
high dim, saddle points are more 
likely than local min

Gradient can be very small near 
saddle points

11

Both	local	min	
and	max

Goodfellow et	al.	(2016)
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Saddle Points

SGD is seen to escape saddle points

– Moves down-hill, uses noisy gradients

Second-order methods get stuck

– solves for a point with zero gradient

12Goodfellow et	al.	(2016)
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Poor Conditioning

Poorly conditioned Hessian matrix

– High curvature: small steps leads to huge increase 

Learning is slow despite strong gradients

13

Oscillations	slow	
down	progress
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No Critical Points

Some cost functions do not have critical points. In particular 
classification. 

14
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No Critical Points

Gradient norm increases, but validation error decreases

15

Convolution	Nets	for	Object	Detection

Goodfellow et	al.	(2016)
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Exploding and Vanishing Gradients

16

Linear	
activation

deeplearning.ai

h1 =Wx
hi =Whi−1,    i = 2…n

y =σ (h1
n + h2

n ),   where σ (s) = 1
1+ e−s
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Exploding and Vanishing Gradients
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Exploding and Vanishing Gradients
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Explodes!

Vanishes!

Suppose  x = 1
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Exploding and Vanishing Gradients

Exploding gradients lead to cliffs

Can be mitigated using gradient clipping

19Goodfellow et	al.	(2016)
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Outline

Optimization
• Challenges in Optimization

• Momentum
• Adaptive Learning Rate

• Parameter Initialization 

• Batch Normalization

20
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Momentum

SGD is slow when there is high curvature

Average gradient presents faster path to opt:

– vertical components cancel out

21

The image part with 
relationship ID rId5 was not 
found in the file.
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Momentum

Uses past gradients for update

Maintains a new quantity: ‘velocity’

Exponentially decaying average of gradients:

22

controls	how	quickly	
effect	of	past	gradients	decay

The image part with relationship ID 
rId4 was not found in the file.

Current	gradient	update

v =  αv +  (−εg)
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Momentum

Compute gradient estimate:

Update velocity:

Update parameters:

23

g = 1
m

∇θL( f (x
(i);θ ), y(i) )

i
∑

v =αv−εg

θ =θ + v
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Momentum

24

Damped	oscillations:
gradients	in	opposite	
directions	get	
cancelled	out

The image part with 
relationship ID rId4 was not 
found in the file.

Goodfellow et	al.	(2016)
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Nesterov Momentum

Apply an interim update:

Perform a correction based on gradient at the interim point:

25

Momentum	based	on	
look-ahead	slope

g = 1
m

∇θL( f (x
(i); !θ ), y(i) )

i
∑

v =αv−εg

θ =θ + v

!θ =θ + v
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Adaptive Learning Rates

Oscillations along vertical direction
– Learning must be slower along parameter 2

Use a different learning rate for each parameter?
27

The 
image 
part with 
relations
hip ID 
rId4 was 

The 
image 
part with 
relationsh
ip ID rId4 
was not 

The image part with 
relationship ID rId4 was not 
found in the file.
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AdaGrad

• Accumulate squared gradients:

• Update each parameter:

• Greater progress along gently sloped directions

28

Inversely	
proportional	to	
cumulative	
squared	gradient

ri = ri + gi
2

θi =θi −
ε

δ + ri
gi
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RMSProp

• For non-convex problems, AdaGrad can prematurely decrease learning 
rate

• Use exponentially weighted average for gradient accumulation

29

ri = ρri + (1− ρ)gi
2

θi =θi −
ε

δ + ri
gi
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Adam

• RMSProp + Momentum

• Estimate first moment:

• Estimate second moment:

• Update parameters:

30

Also	applies	
bias	correction	

to	v and	r

Works	well	in	practice,	
is	fairly	robust	to	
hyper-parameters

vi = ρ1vi + (1− ρ1 )gi

θi =θi −
ε

δ + ri
vi

ri = ρ2ri + (1− ρ2 )gi
2
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Parameter Initialization

• Goal: break symmetry between units

• so that each unit computes a different function

• Initialize all weights (not biases) randomly

• Gaussian or uniform distribution

• Scale of initialization?

• Large -> grad explosion,  Small -> grad vanishing

32
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Xavier Initialization

• Heuristic for all outputs to have unit variance

• For a fully-connected layer with m inputs:

• For ReLU units, it is recommended:

33

Wij ~ N 0,  1
m
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Normalized Initialization

• Fully-connected layer with m inputs, n outputs:

• Heuristic trades off between initialize all layers have same 
activation and gradient variance

• Sparse variant when m is large

– Initialize k nonzero weights in each unit

34

Wij ~U −
6

m+ n
,  6

m+ n

"

#
$

%

&
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Bias Initialization

• Output unit bias

• Marginal statistics of the output in the training set

• Hidden unit bias

• Avoid saturation at initialization

• E.g. in ReLU, initialize bias to 0.1 instead of 0

• Units controlling participation of other units

• Set bias to allow participation at initialization

35
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Outline

Challenges in Optimization

Momentum

Adaptive Learning Rate

Parameter Initialization 

Batch Normalization

36
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Feature Normalization

Good practice to normalize features before applying learning 
algorithm:

Features in same scale: mean 0 and variance 1
– Speeds up learning

37

Vector	of	mean	feature	values

Vector	of	SD	of	feature	values

Feature	vector

!x = x −µ
σ
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Feature Normalization

38

Before	normalization After	normalization

The image part with 
relationship ID rId4 was not 
found in the file.
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Internal Covariance Shift

Each hidden layer changes distribution of 
inputs to next layer: slows down learning

39

Normalize	
inputs	to	layer	2

Normalize	
inputs	to	layer	n

…
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Batch Normalization

Training time:
– Mini-batch of activations for layer to normalize

40

K hidden	layer	
activations

N data	points	in	
mini-batch

H =

H11 ! H1K

" # "
HN1 ! HNK
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Batch Normalization

Training time: 
– Mini-batch of activations for layer to normalize

where

41

Vector	of	mean	activations	
across	mini-batch

Vector	of	SD	of	each	unit	
across	mini-batch

H ' = H −µ
σ

µ =
1
m

Hi,:
i
∑          σ =

1
m

(H −µ)i
2 +δ

i
∑
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Batch Normalization

Training time: 
– Normalization can reduce expressive power

– Instead use:

– Allows network to control range of normalization

42

Learnable	parameters

γ !H +β
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Batch Normalization

43

…
..

Batch	1

Batch	N
Add	normalization	
operations	for	layer	1

µ1 =
1
m

Hi,:
i
∑

σ 1 =
1
m

(H −µ)i
2 +δ

i
∑
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µ 2 =
1
m

Hi,:
i
∑

σ 2 =
1
m

(H −µ)i
2 +δ

i
∑

Batch Normalization

44

Batch	1

Batch	N

…
..

Add	normalization	
operations	for	layer	2	
and	so	on	…	
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Batch Normalization

Differentiate the joint loss for N mini-batches

Back-propagate through the norm operations

Test time:
– Model needs to be evaluated on a single example

– Replace μ and σ with running averages collected during training

45


