Lecture 19 Additional Material: Optimization

CS109A Introduction to Data Science Pavlos Protopapas and Kevin Rader

Outline

Optimization

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization

Learning vs. Optimization

Goal of learning: minimize generalization error In practice, empirical risk minimization:

$$J(\theta) = \mathbf{E}_{(x,y) \sim p_{data}} \left[L(f(x;\theta), y) \right]$$

$$\hat{J}(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)})$$

Quantity optimized different from the quantity we care about

Batch vs. Stochastic Algorithms

Batch algorithms

Optimize empirical risk using exact gradients

Stochastic algorithms

Estimates gradient from a small random sample

$$\nabla J(\theta) = \mathbf{E}_{(x,y) \sim p_{data}} \left[\nabla L(f(x;\theta), y) \right]$$

Large mini-batch: gradient computation expensive

Small mini-batch: greater variance in estimate, longer steps for convergence

Critical Points

Points with zero gradient

2nd-derivate (Hessian) determines curvature

Stochastic Gradient Descent

Take small steps in direction of negative gradient Sample *m* examples from training set and compute:

Update parameters:
$$g = \frac{1}{m} \sum_{i} \nabla L(f(x^{(i)}; \theta), y^{(i)})$$

$$\theta = \theta - \varepsilon_k g$$

In practice: shuffle training set once and pass through multiple times

Stochastic Gradient Descent

Oscillations because updates do not exploit curvature information

Goodfellow et al. (2016)

Outline

Optimization

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization

Local Minima

Local Minima

Old view: local minima is major problem in neural network training

Recent view:

- For sufficiently large neural networks, most local minima incur low cost
- Not important to find true global minimum

Saddle Points

Recent studies indicate that in high dim, saddle points are more likely than local min

Gradient can be very small near saddle points

Saddle Points

SGD is seen to escape saddle points

- Moves down-hill, uses noisy gradients

Second-order methods get stuck

solves for a point with zero gradient

Poor Conditioning

Poorly conditioned Hessian matrix

High curvature: small steps leads to huge increase
 Learning is slow despite strong gradients

Oscillations slow down progress

No Critical Points

Some cost functions do not have critical points. In particular classification.

No Critical Points

Gradient norm increases, but validation error decreases

Convolution Nets for Object Detection

Linear activation

$$\mathbf{h}_1 = \mathbf{W}\mathbf{x}$$

$$\mathbf{h}_i = \mathbf{W}\mathbf{h}_{i-1}, \quad i = 2...n$$

$$y = \sigma(h_1^n + h_2^n)$$
, where $\sigma(s) = \frac{1}{1 + e^{-s}}$

Suppose
$$\mathbf{W} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
:

$$\begin{bmatrix} h_1^1 \\ h_2^1 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \cdots \qquad \begin{bmatrix} h_1^n \\ h_2^n \end{bmatrix} = \begin{bmatrix} a^n & 0 \\ 0 & b^n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$y = \sigma(a^{n}x_{1} + b^{n}x_{2})$$

$$\nabla y = \sigma'(a^{n}x_{1} + b^{n}x_{2}) \begin{bmatrix} na^{n-1}x_{1} \\ nb^{n-1}x_{2} \end{bmatrix}$$

Suppose
$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Case 1: a = 1, b = 2:

$$y \to 1, \quad \nabla y \to \begin{bmatrix} n \\ n2^{n-1} \end{bmatrix}$$
 Explodes!

Case 2:
$$a = 0.5$$
, $b = 0.9$:

$$y \to 0, \quad \nabla y \to \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Vanishes!

Exploding gradients lead to cliffs

Can be mitigated using gradient clipping

Outline

Optimization

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization

SGD is slow when there is high curvature

Average gradient presents faster path to opt:

vertical components cancel out

Uses past gradients for update

Maintains a new quantity: 'velocity'

Exponentially decaying average of gradients:

Compute gradient estimate:

$$g = \frac{1}{m} \sum_{i} \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$$

Update velocity:

$$v = \alpha v - \varepsilon g$$

Update parameters:

$$\theta = \theta + v$$

Damped oscillations: gradients in opposite directions get cancelled out

found in the file.

Nesterov Momentum

Apply an interim update:

$$\tilde{\theta} = \theta + v$$

Perform a correction based on gradient at the interim point:

$$g = \frac{1}{m} \sum_{i} \nabla_{\theta} L(f(x^{(i)}; \tilde{\theta}), y^{(i)})$$

$$v = \alpha v - \varepsilon g$$

$$\theta = \theta + v$$

Momentum based on look-ahead slope

Outline

Optimization

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization

Adaptive Learning Rates

Oscillations along vertical direction

Learning must be slower along parameter 2

Use a different learning rate for each parameter?

AdaGrad

Accumulate squared gradients:

$$r_i = r_i + g_i^2$$

• Update each parameter:

$$\theta_i = \theta_i - \frac{\varepsilon}{\delta + \sqrt{r_i}} g_i$$

Greater progress along gently sloped directions

Inversely proportional to cumulative squared gradient

RMSProp

- For non-convex problems, AdaGrad can prematurely decrease learning rate
- Use exponentially weighted average for gradient accumulation

$$r_i = \rho r_i + (1 - \rho)g_i^2$$

$$\theta_i = \theta_i - \frac{\varepsilon}{\delta + \sqrt{r_i}} g_i$$

Adam

- RMSProp + Momentum
- **Estimate first moment:**

$$v_i = \rho_1 v_i + (1 - \rho_1) g_i$$

Estimate second moment:

$$r_i = \rho_2 r_i + (1 - \rho_2) g_i^2$$

Update parameters:

$$\theta_i = \theta_i - \frac{\varepsilon}{\delta + \sqrt{r_i}} v_i$$
 Works well in practice is fairly robust to hyper-parameters

Works well in practice, hyper-parameters

Outline

Optimization

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization

Parameter Initialization

- Goal: break symmetry between units
 - so that each unit computes a different function
- Initialize all weights (not biases) randomly
 - Gaussian or uniform distribution
- Scale of initialization?
 - Large -> grad explosion, Small -> grad vanishing

Xavier Initialization

- Heuristic for all outputs to have unit variance
- For a fully-connected layer with *m* inputs:

$$W_{ij} \sim N\left(0, \frac{1}{m}\right)$$

For ReLU units, it is recommended:

$$W_{ij} \sim N\left(0, \frac{2}{m}\right)$$

Normalized Initialization

Fully-connected layer with m inputs, n outputs:

$$W_{ij} \sim U\left(-\sqrt{\frac{6}{m+n}}, \sqrt{\frac{6}{m+n}}\right)$$

- Heuristic trades off between initialize all layers have same activation and gradient variance
- Sparse variant when m is large
 - Initialize k nonzero weights in each unit

Bias Initialization

- Output unit bias
 - Marginal statistics of the output in the training set
- Hidden unit bias
 - Avoid saturation at initialization
 - E.g. in ReLU, initialize bias to 0.1 instead of 0
- Units controlling participation of other units
 - Set bias to allow participation at initialization

Outline

Challenges in Optimization

Momentum

Adaptive Learning Rate

Parameter Initialization

Batch Normalization

Feature Normalization

Good practice to normalize features before applying learning algorithm:

Features in same scale: mean 0 and variance 1

Speeds up learning

Before normalization

After normalization

Internal Covariance Shift

Each hidden layer changes distribution of inputs to next layer: slows down learning

Training time:

Mini-batch of activations for layer to normalize

$$H = \begin{bmatrix} H_{11} & \cdots & H_{1K} \\ \vdots & \ddots & \vdots \\ H_{N1} & \cdots & H_{NK} \end{bmatrix}$$
 K hidden layer activations

N data points in mini-batch

Training time:

Mini-batch of activations for layer to normalize

where

$$H' = \frac{H - \mu}{\sigma}$$

$$\mu = \frac{1}{m} \sum_{i} H_{i,:}$$

Vector of mean activations across mini-batch

$$\sigma = \sqrt{\frac{1}{m} \sum_{i} (H - \mu)_{i}^{2} + \delta}$$

Vector of SD of each unit across mini-batch

Training time:

- Normalization can reduce expressive power
- Instead use:

$$\gamma H' + \beta$$
Learnable parameters

Allows network to control range of normalization

Differentiate the joint loss for N mini-batches Back-propagate through the norm operations

Test time:

- Model needs to be evaluated on a single example
- Replace μ and σ with running averages collected during training

