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Lecture 19: NN Regularization
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Regularization
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Regularization is any modification we make to a learning algorithm that is 
intended to reduce its generalization error but not its training error.
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Overfitting
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Fitting a deep neural network with 5 layers and 100 neurons per layer can lead to 
a very good prediction on the training set but poor prediction on validations set.
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Norm Penalties

We used to optimize:
𝐽 𝑊; 𝑋, 𝑦

Change to …
𝐽' 𝑊;𝑋, 𝑦 = 	𝐽 𝑊; 𝑋, 𝑦 + 𝛼Ω(𝑊)

L2 regularization:
– Weights decay
– MAP estimation with Gaussian prior

L1 regularization:
– encourages sparsity
– MAP estimation with Laplacian prior
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Biases	not	
penalized

Ω 𝑊 =
1
2
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Ω 𝑊 =
1
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Norm Penalties

We used to optimize:
𝐽 𝑊; 𝑋, 𝑦

Change to …
𝐽' 𝑊;𝑋, 𝑦 = 	𝐽 𝑊; 𝑋, 𝑦 + 𝛼Ω(𝑊)

L2 regularization:
– Decay of weights
– MAP estimation with Gaussian prior

L1 regularization:
– encourages sparsity
– MAP estimation with Laplacian prior
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Biases	not	
penalized

Ω 𝑊 =
1
2
∥ 𝑊 ∥22

Ω 𝑊 =
1
2
∥ 𝑊 ∥3

𝑊(453) = 𝑊(4) − 𝜆
𝜕𝐽
𝜕𝑊

𝐽' 𝑊;𝑋, 𝑦 = 	𝐽 𝑊; 𝑋, 𝑦 +
1
2
𝛼𝑊2

𝑊(453) = 𝑊(4) − 𝜆
𝜕𝐽
𝜕𝑊

− 𝜆𝛼	𝑊	

weights	
decay	in	

proportion	
to	its	size.
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Norm Penalties

8

Ω 𝑊 =
1
2
∥ 𝑊 ∥22

Ω 𝑊 =
1
2
∥ 𝑊 ∥3



CS109A, PROTOPAPAS, RADER

Norm Penalties as Constraints

Useful if K is known in advance 

Optimization:

• Construct Lagrangian and apply gradient descent

• Projected gradient descent
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min
< = >?

𝐽(𝑊;𝑋, 𝑦)
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Early Stopping
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Training time can be 
treated as a 

hyperparameter

Early stopping: terminate while validation set performance is better 
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Early Stopping
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Data Augmentation
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Data Augmentation
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Sparse Representation
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𝐽 𝜃; 𝑋, 𝑦

𝑊3

𝑊2

𝑊A

𝑊B

𝑊C

𝑊D

4.34 = 3.2 2.0 1.8 	
2

−2.2
1.3

𝑊J 𝑌

𝑊J



CS109A, PROTOPAPAS, RADER

Sparse Representation
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𝐽' 𝑊;𝑋, 𝑦 = 	𝐽 𝜃; 𝑋, 𝑦 + 𝛼Ω(𝑊)
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Weights in output layer
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Sparse Representation
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𝐽 𝜃; 𝑋, 𝑦
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Sparse Representation
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𝐽' 𝑊;𝑋, 𝑦 = 	𝐽 𝜃; 𝑋, 𝑦 + 𝛼Ω(ℎ)

Output of hidden layer

ℎA3

ℎA2
ℎAA

1.3 = 3.2 2 1 	
0

−0.2
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ℎA3, ℎA2, ℎAA
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Noise Robustness

Random perturbation of network weights

• Gaussian noise: Equivalent to minimizing loss with regularization term 

• Encourages smooth function: small perturbation in weights leads to 
small changes in output

Injecting noise in output labels

• Better convergence: prevents pursuit of hard probabilities

24



CS109A, PROTOPAPAS, RADER

Dropout
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Train all sub-networks 
obtained by removing non-
output units from base 
network
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Dropout: Stochastic GD

For each new example/mini-batch:

• Randomly sample a binary mask μ independently, where μi indicates	if
input/hidden node i is included

• Multiply output of node i with μi, and perform gradient update

Typically, an input node is included with prob=0.8, hidden node with 
prob=0.5.
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Dropout: Weight Scaling

During prediction time use all units, but scale weights with probability 
of inclusion
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Adversarial Examples
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Adversarial Examples
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+ =

Training on adversarial examples is mostly intended to improve 
security, but can sometimes provide generic regularization.  

Panda 57% confidence Gibbon 99.3% confidencenoise
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Recap 
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