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Lecture Outline 

•  Discriminant Analysis  
•  LDA for one predictor  
•  LDA for p > 1 
•  QDA  

•  Comparison of Classification Methods (so far)  
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Recall the Heart Data (for classification) 

Age	 Sex	 ChestPain	 RestBP	 Chol	 Fbs	 RestECG	 MaxHR	 ExAng	 Oldpeak	 Slope	 Ca	 Thal	 AHD	

63	 1	 typical	 145	 233	 1	 2	 150	 0	 2.3	 3	 0.0	 fixed	 No	

67	 1	 asymptomatic	 160	 286	 0	 2	 108	 1	 1.5	 2	 3.0	 normal	 Yes	

67	 1	 asymptomatic	 120	 229	 0	 2	 129	 1	 2.6	 2	 2.0	 reversable	 Yes	

37	 1	 nonanginal	 130	 250	 0	 0	 187	 0	 3.5	 3	 0.0	 normal	 No	

41	 0	 nontypical	 130	 204	 0	 2	 172	 0	 1.4	 1	 0.0	 normal	 No	

 
response variable Y 

is Yes/No 
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Discriminant Analysis for Classification 
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Linear discriminant analaysis (LDA) takes a different approach to 
classification than logistic regression.  Rather than attempting to model the 
conditional distribution of Y given X, P(Y = k|X = x), LDA models the 
distribution of the predictors X given the different categories that Y takes 
on, P(X = x|Y = k).  
 
In order to flip these distributions around to model P(X = x|Y = k) an analyst 
uses Bayes' theorem. 

  
In this setting with one feature (one X), Bayes' theorem can then be written 
as: 

  
  

What does this mean?   

Linear Discriminant Analysis (LDA) 
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LDA (cont.) 

  
 
The left hand side, P(Y = k|X = x), is called the posterior probability 
and gives the probability that the observation is in the kth category 
given the feature, X, takes on a specific value, x.   The numerator on 
the right is conditional distribution of the feature within category k, 
fk(x), times the prior probability that observation is in the kth category.   

  
The Bayes' classifier is then selected.  That is the observation 
assigned to the group for which the posterior probability is the 
largest. 
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Inventor of LDA: R.A. Fisher 

The 'Father' of Statistics.   More famous for work in genetics (statistically 
concluded that Mendel's genetic experiments were 'massaged'). 
Novel statistical work includes: 
•  Experimental Design 
•  ANOVA 
•  F-test (why do you think it's called the F-test?) 
•  Exact test for 2 x 2 tables 
•  Maximum Likelihood Theory 
•  Use of 𝛼 = 0.05 significance level: “The value for which P = .05, or 1 in 

20, is 1.96 or nearly 2; it is convenient to take this point as a limit in 
judging whether a deviation is to be considered significant or not”. 

•   And so much more... 



CS109A, PROTOPAPAS, RADER 

LDA for one predictor 

LDA has the simplest form when there is just one predictor/feature (p 
= 1).  In order to estimate fk(x), we have to assume it comes from a 
specific distribution. If X is quantitative, what distribution do you think 
we should use?  
 

One common assumption is that fk(x) comes from a Normal 
distribution: 
 
 

 
In shorthand notation, this is often written as ​𝑋�𝑌=𝑘 ~𝑁(​𝜇↓𝑘 , ​
𝜎↓𝑘↑2 ), 
meaning, the distribution of the feature X within category k is 
Normally distributed with mean ​𝜇↓𝑘  and variance ​𝜎↓𝑘↑2 . 
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An extra assumption that the variances are equal,  
​𝜎↓1↑2 = ​𝜎↓2↑2 =…=​𝜎↓𝐾↑2  will simplify are lives. 
 

Plugging this assumed likelihood into the Bayes' formula (to get 
the posterior) results in: 
 
 
 

The Bayes classifier will be the one that maximizes this over all 
values chosen for x.  How should we maximize? 
 

So we take the log of this expression and rearrange to simplify 
our maximization... 

LDA for one predictor (cont.) 
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LDA for one predictor (cont.) 

So we maximize the following simplified expression: 
  

 
How does this simplify if we have just two classes (K = 2) and if 
we set our prior probabilities to be equal?  
This is equivalent to choosing a decision boundary for x for 
which  

  
 
Intuitively, why does this expression make sense?  What do we 
use in practice? 
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LDA for one predictor (cont.) 

In practice we don’t know the true mean, variance, and prior.  So 
we estimate them with the classical estimates, and plug-them 
into the expression: 

  
 
and 
 
 
where n is the total sample size and nk is the sample size within 
class k (thus, n = ∑↑▒nk ). 
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LDA for one predictor (cont.) 

This classifier works great if the classes are about equal in 
proportion, but can easily be extended to unequal class sizes.   

 

Instead of assuming all priors are equal, we instead set the 
priors to match the 'prevalence' in the data set: 

  
Note: we can use a prior probability from knowledge of the 
subject as well; for example, if we expect the test set to have a 
different prevalence than the training set.  
 

How could we do this in the Dem. vs. Rep. data set? 
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LDA for one predictor (cont.) 

Plugging all of these estimates back into the original logged 
maximization formula we get: 
 
 
 
Thus this classifier is called the linear discriminant classifier: this 
discriminant function is a linear function of x. 
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Illustration of LDA when p = 1 
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LDA when p > 1 



CS109A, PROTOPAPAS, RADER 

LDA when p > 1 

LDA generalizes 'nicely' to the case when there is more than 
one predictor.  
 
Instead of assuming the one predictor is Normally distributed, it 
assumes that the set of predictors for each class is 'multivariate 
normal distributed' (shorthand: MVN).  What does that mean?  
 
This means that the vector of X for an observation has a 
multidimensional normal distribution with a mean vector, 𝜇, and 
a covariance matrix, 𝚺. 
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Multivariate Normal Distribution 

Here is a visualization of the Multivariate Normal distribution 
with 2 variables: 
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MVN Distribution 

The joint PDF of the Multivariate Normal distribution, 
                                , is: 
 
 
 
where      is a p dimensional vector and |Σ| is the determinant of 
the p x p covariance matrix. 
 

Let's do a quick dimension analysis sanity check... 
 

What do      and Σ look like? 
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LDA when p > 1 

Discriminant analysis in the multiple predictor case assumes the set of 
predictors for each class is then multivariate Normal: 
 
Just like with LDA for one predictor, we make an extra assumption that the 
covariances are equal in each group, ​Σ↓1 = ​Σ↓2 =…=​Σ↓𝐾 . in order to 
simplify our lives. 
 
Now plugging this assumed likelihood into the Bayes' formula (to get the 
posterior) results in: 
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LDA when p > 1 (cont.) 

Then doing the same steps as before (taking log and maximizing), we see 
that the classification will for an observation based on its predictors, ​𝑥 , will 
be the one that maximizes (maximum of K of these ​𝛿↓𝑘 ( ​𝑥 )): 
 
 
Note: this is just the vector-matrix version of the formula we saw earlier in 
lecture: 
 
 

What do we have to estimate now with the vector-matrix version?  How 
many parameters are there?  

There are pK means, pK variances, K prior proportions, and (█𝑝@2 )= ​
𝑝(𝑝−1)/2  covariances to estimate. 
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LDA when K > 2 

The linear discriminant nature of LDA still holds not only when p > 1, but 
also when K > 2 for that matter as well. A picture can be very illustrative: 
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Quadratic Discriminant Analysis (QDA) 
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Quadratic Discriminant Analysis (QDA) 

A generalization to linear discriminant analysis is quadratic 
discriminant analysis (QDA). 
 
Why do you suppose the choice in name? 
 
The implementation is just a slight variation on LDA.  Instead of 
assuming the covariances of the MVN distributions within 
classes are equal, we instead allow them to be different. 
 
This relaxation of an assumption completely changes the 
picture... 
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QDA in a picture 

A picture can be very illustrative: 

QDA in a picture  
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QDA (cont.) 

When performing QDA, performing classification for an 
observation based on its predictors ​𝑥  is equivalent to 
maximizing the following over the K classes: 
 
 
Notice the `quadratic form' of this expression.  Hence the name 
QDA. 
 

Now how many parameters are there to be estimated?  
 

There are pK means, pK variances, K prior proportions, and 
(█𝑝@2 )𝐾=(​𝑝(𝑝−1)/2 )𝐾 covariances to estimate.  This could 
slow us down very much if K is large... 
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Discriminant Analysis in Python 

LDA is already implemented in Python via the 
sklearn.discriminant_analysis package through the 
LinearDiscriminantAnalysis function.   
 
QDA is in the same package and is the 
QuadraticDiscriminantAnalysis function. 
 
It's very easy to use.  Let's see how this works 
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Discriminant Analysis in Python (cont.) 



CS109A, PROTOPAPAS, RADER 

QDA vs. LDA 

So both QDA and LDA take a similar approach to solving this 
classification problem: they use Bayes' rule to flip the conditional 
probability statement and assume observations within each 
class are multivariate Normal (MVN) distributed. 
 
QDA differs in that it does not assume a common covariance 
across classes for these MVNs.  What advantage does this 
have?  What disadvantage does this have? 
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QDA vs. LDA (cont.) 

So generally speaking, when should QDA be used over LDA?  
LDA over QDA?  
 
The extra covariance parameters that need to be estimated in 
QDA not only slow us down, but also allow for another 
opportunity for overfitting.  Thus if your training set is small, LDA 
should perform better for out-of-sample prediction, aka, 
predicting future observations (how do we mimic this process?) 
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Comparison of Classification Methods (so far) 
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Quadratic Discriminant Analysis (QDA) 

We have seen 3 major methods for doing classification: 
•  Logistic Regression 
•  k-NN 
•  Discriminant Analysis (LDA and QDA) 
For a specific problem, which approach should be used? 
 
Well of course, it depends on the nature of the data.  So how 
should we decide?  
 
Visualize the data! 
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Six Classification Models We'll Compare 

Let's investigate which method will work the best (as measured by lowest 
overall classification error rate), by considering 6 different models for 4 
different data sets (each data set as a pair of predictors...you can think of 
them as the first 2 PCA components…to come later in the lecture).  The 6 
models to consider are: 
•  A logistic regression with only 'linear' main effects} 
•  A logistic regression with only 'linear' and 'quadratic' effects} 
•  LDA 
•  QDA 
•  k-NN where k = 3 
•  k-NN where k = 25 
What else will also be important to measure (besides error rate)? 
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Which method should perform better? #1 

n = 20,000, p = 2, K = 2, 𝜋1 = 𝜋 2 = 0.5  
 
 
 
 
 
 
 
 
 
 
 

Notice	anything	fishy	about	our	answers?	What	
did	Kevin	do?	What	should	he	have	done?		



CS109A, PROTOPAPAS, RADER 

Easy to implement in Python 



CS109A, PROTOPAPAS, RADER 

Which method should perform better? #2 

n = 20,000, p = 2, K = 2, 𝜋1 = 𝜋2 = 0.5  
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Which method should perform better? #3 

n = 20,000, p = 2, K = 2, 𝜋1 = 𝜋2 = 0.5  
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Which method should perform better? #4 

n = 20,000, p = 2, K = 2, 𝜋1 = 𝜋2 = 0.5  
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Summary of Results 

Generally speaking: 
•  LDA outperforms Logistic Regression if the distribution of predictors is 

reasonably MVN (with constant covariance). 
•  QDA outperforms LDA  if the covariances are not the same in the 

groups. 
•  k-NN outperforms the others if the decision boundary is extremely non-

linear. 
•  Of course, we can always adapt our models (logistic and LDA/QDA) to 

include polynomial terms, interaction terms, etc... to improve 
classification (watch out for overfitting!) 

•  In order of computational speed (generally speaking, it depends on K, 
p, and n of course): 

LDA > QDA > Logistic > k-NN 


