
CS109A Introduction to Data Science
Pavlos Protopapas and Kevin Rader

Lecture 13: k-NN Classification and
Dealing with Missingness

CS109A, PROTOPAPAS, RADER

Lecture Outline

•  k-NN review

•  k-NN for Classification

•  Dealing with Missingness

•  Types of Missingness

•  Imputation Methods

CS109A, PROTOPAPAS, RADER

k-Nearest Neighbors

We’ve already seen the k-NN method for predicting a
quantitative response (it was the very first method we
introduced). How was k-NN implemented in the Regression
setting (quantitative response)?
The approach was simple: to predict an observation’s response,
use the other available observations that are most similar to it.
For a specified value of k, each observation’s outcome is
predicted to be the average of the k-closest observations as
measured by some distance of the predictor(s).
With one predictor, the method was easily implemented.

CS109A, PROTOPAPAS, RADER

Review: Choice of k

How well the predictions perform is related to the choice of k.
What will the predictions look like if k is very small? What if it is
very large?

More specifically, what will the predictions be for new
observations if k = n?

A picture is worth a thousand words...

𝑌 	

CS109A, PROTOPAPAS, RADER

Choice of k matters

CS109A, PROTOPAPAS, RADER

k-NN for Classification

CS109A, PROTOPAPAS, RADER

k-NN for Classification

How can we modify the k-NN approach for classification?
The approach here is the same as for k-NN regression: use the
other available observations that are most similar to the
observation we are trying to predict (classify into a group) based
on the predictors at hand.

How do we classify which category a specific observation
should be in based on its nearest neighbors?
The category that shows up the most among the nearest
neighbors.

CS109A, PROTOPAPAS, RADER

k-NN for Classification: formal definition

 The k-NN classifier first identifies the k points in the training data

that are closest to x0, represented by 𝒩↓0 . It then estimates the
conditional probability for class j as the fraction of points in 𝒩↓0 
whose response values equal j:

Then, the k-NN classifier applies Bayes rule and classifies the
test observation, x0, to the class with largest estimated
probability.

𝑃𝑌=𝑗�𝑋= 𝑥↓0  = 1/𝑘 ∑𝑖∈𝒩↓0 ↑▒𝐼(𝑦↓𝑖 =𝑗) 	

CS109A, PROTOPAPAS, RADER

k-NN for Classification (cont.)

There are some issues that may arise:
•  How can we handle a tie?
•  What could be a major problem with always classifying to the

most common group amongst the neighbors?

•  How can we handle this?

With	a	coin	flip!		

If	one	category	is	much	more	common	than	the	others	then	
all	the	predictions	may	be	the	same!		

Rather	than	classifying	with	the	most	likely	group,	use	a	biased	
coin	flip	to	decide	which	group	to	classify	to.	

CS109A, PROTOPAPAS, RADER

k-NN with Multiple Predictors

How could we extend k-NN (both regression and classification)
when there are multiple predictors?
We would need to define a measure of distance for observations
in order to which are the most similar to the observation we are
trying to predict.
Euclidean distance is a good option. To measure the distance of
a new observation, x0 from each observation in the data set, xi:

𝐷↑2 (𝒙↓𝑖 , 𝒙↓0 )=∑𝑗=1↑𝑃▒(𝑥↓𝑖,𝑗 − 𝑥↓0,𝑗 )↑2  	

CS109A, PROTOPAPAS, RADER

k-NN with Multiple Predictors (cont.)

But what must we be careful about when measuring distance?
1. Differences in variability in our predictors!
2. Having a mixture of quantitative and categorical predictors.
So what should be good practice? To determine closest
neighbors when P > 1, you should first standardize the
predictors! And you can even standardize the binaries if you
want to include them.
How else could we determine closeness in this multi-
dimensional setting?

CS109A, PROTOPAPAS, RADER

k-NN Classification in Python

Performing kNN
classification in python is
done via
KNeighborsClassifier
in sklearn.neighbors.

An example:

CS109A, PROTOPAPAS, RADER

Classification Boundaries in k-NN Classification

What will the classification boundaries look line in k-NN
classification? With one predictors? With 2 predictors? With 3+
predictors?
How can we visualize these? In 1D? In 2D? In 3D+?
How do they compare to Logistic Regression classification
boundaries?

CS109A, PROTOPAPAS, RADER

Dealing with Missingness

CS109A, PROTOPAPAS, RADER

What is missing data? k-Nearest Neighbors

Often times when data is collected, there are some missing
values apparent in the dataset. This leads to a few questions to
consider:

•  How does this show up in pandas?
•  How does pandas and sklearn handle these NaNs?
•  How does this effect our modeling?

CS109A, PROTOPAPAS, RADER

Naively handling missingness

What is the simplest way to handle missing data?

•  Impute the mean (if quantitative) or most common class (if

categorical) for all missing values.
•  How does pandas and sklearn handle these NaNs?

What are some consequences in handling missingness in this
fashion?

CS109A, PROTOPAPAS, RADER

Types of Missingness

CS109A, PROTOPAPAS, RADER

Sources of Missingness

Missing data can arise from various places in data:
•  A survey was conducted and values were just randomly

missed when being entered in the computer.
•  A respondent chooses not to respond to a question like

`Have you ever done cocaine?'.
•  You decide to start collecting a new variable (like Mac vs. PC)

partway through the data collection of a study.
•  You want to measure the speed of meteors, and some

observations are just 'too quick' to be measured properly.
The source of missing values in data can lead to the major types
of missingness:

CS109A, PROTOPAPAS, RADER

Types of Missingness

There are 3 major types of missingness to be concerned about:
1.  Missing Completely at Random (MCAR) - the probability of

missingness in a variable is the same for all units. Like
randomly poking holes in a data set.

2.  Missing at Random (MAR) - the probability of missingness
in a variable depends only on available information (in other
predictors).

3.  Missing Not at Random (MNAR) - the probability of
missingness depends on information that has not been
recorded and this information also predicts the missing
values.

What are examples of each these 3 types?

CS109A, PROTOPAPAS, RADER

Missing completely at random (MCAR)

Missing Completely at Random is the best case scenario, and
the easiest to handle:
•  Examples: a coin is flipped to determine whether an entry is

removed. Or when values were just randomly missed when
being entered in the computer.

•  Effect if you ignore: there is no effect on inferences
(estimates of beta).

•  How to handle: lots of options, but best to impute (more on
next slide).

CS109A, PROTOPAPAS, RADER

Missing at random (MAR)

Missing at random is still a case that can be handled.
•  Example(s): men and women respond to the question "have

you ever felt harassed at work?" at different rates (and may
be harassed at different rates).

•  Effect if you ignore: inferences are biased (estimates of beta)
and predictions are usually worsened.

•  How to handle: use the information in the other predictors to
build a model and `impute' a value for the missing entry.

Key: we can fix any biases by modeling and imputing the
missing values based on what is observed!

CS109A, PROTOPAPAS, RADER

Missing Not at Random (MNAR)

Missing Not at Random is the worst case scenario, and
impossible to handle:
•  Example(s): patients drop out of a study because they

experience some really bad side effect that was not
measured. Or cheaters are less likely to respond when
asked if you've ever cheated.

•  Effect if you ignore: there is no effect on inferences
(estimates of beta) or predictions.

•  How to handle: you can 'improve' things by dealing with it like
it is MAR, but you [likely] may never completely fix the bias.

CS109A, PROTOPAPAS, RADER

What type of missingness is present?

Can you ever tell based on your data what type of missingness
is actually present?

Since we asked the question, the answer must be no.
It generally cannot be determined whether data really are
missing at random, or whether the missingness depends on
unobserved predictors or the missing data themselves. The
problem is that these potential “lurking variables” are
unobserved (by definition) and so can never be completely ruled
out.

In practice, a model with as many predictors as possible is used
so that the `missing at random' assumption is reasonable.

CS109A, PROTOPAPAS, RADER

Imputation Methods

CS109A, PROTOPAPAS, RADER

Handling Missing Data

When encountering missing data, the approach to handling it
depends on:
1.  whether the missing values are in the response or in the

predictors. Generally speaking, it is much easier to handle
missingness in predictors.

2.  whether the variable is quantitative or categorical.
3.  how much missingness is present in the variable. If there is

too much missingness, you may be doing more damage than
good.

Generally speaking, it is a good idea to attempt to impute (or
`fill in') entries for missing values in a variable (assuming your
method of imputation is a good one).

CS109A, PROTOPAPAS, RADER

Imputation Methods

There are several different approaches to imputing missing values:
1.  Plug in the mean or median (quantitative) or most common class

(categorical) for all missing values in a variable.
2.  Create a new variable that is an indicator of missingness, and include it

in any model to predict the response (also plug in zero or the mean in
the actual variable).

3.  Hot deck imputation: for each missing entry, randomly select an
observed entry in the variable and plug it in.

4.  Model the imputation: plug in predicted values (𝑦 ) from a model based
on the other observed predictors.

5.  Model the imputation with uncertainty: plug in predicted values plus
randomness (𝑦 +𝜖) from a model based on the other observed
predictors.

What are the advantages and disadvantages of each approach?

CS109A, PROTOPAPAS, RADER

Schematic: imputation through modeling

How do we use models to fill in missing data?

CS109A, PROTOPAPAS, RADER

Schematic: imputation through modeling

How do we use models to fill in missing data?

CS109A, PROTOPAPAS, RADER

Schematic: imputation through modeling

How do we use models to fill in missing data? Using k-NN for k
= 2?

CS109A, PROTOPAPAS, RADER

Schematic: imputation through modeling

How do we use models to fill in missing data? Using k-NN for k
= 2?

CS109A, PROTOPAPAS, RADER

Schematic: imputation through modeling

How do we use models to fill in missing data? Using linear
regression?

Where m and b are computed from the observations (rows) that
do not have missingness (we should call them b = 𝛽↓0  and m =
𝛽↓1 ).

CS109A, PROTOPAPAS, RADER

Imputation through modeling with uncertainty

The schematic in the last few slides ignores the fact of imputing
with uncertainty. What happens if you ignore this fact and just
use the ‘best’ model to impute values solely on 𝑦 ?

The distribution of the imputed values will be too narrow and not
represent real data (see next slide for illustration). The goal is to
impute values that include the uncertainty of the model.

How can this be done in practice in k-NN? In linear regression?
In logistic regression?

CS109A, PROTOPAPAS, RADER

Imputation through modeling with uncertainty: an illustration

CS109A, PROTOPAPAS, RADER

Imputation through modeling with uncertainty: an illustration

Recall the probabilistic model in linear regression:

where 𝜖~𝑁(0, 𝜎↑2 ). How can we take advantage of this model
to impute with uncertainty?
It’s a 3 step process:
1.  Fit a model to predict the predictor variable with missingness

from all the other predictors.
2.  Predict the missing values from the model in the previous

part.
3.  Add in a measure of uncertainty to this prediction by

randomly sampling from a 𝑁(0, 𝜎↑2 ) distribution, where 𝜎↑2 
is the mean square error (MSE) from the model.

CS109A, PROTOPAPAS, RADER

Imputation through modeling with uncertainty: k-NN regression

How can we use k-NN regression to impute values that mimic
the error in our observations?

Two ways:
•  Use k = 1.
•  Use any other k, but randomly select from the nearest

neighbors in 𝒩↓0 . This can be done with equal probability or
with some weighting (inverse to the distance measure used).

CS109A, PROTOPAPAS, RADER

Imputation through modeling with uncertainty: classifiers

For classifiers, this imputation with uncertainty/randomness is a
little easier process. How can it be implemented?

If a classification model (logistic, k-NN, etc...) is used to predict
the variable with missingness on the observed predictors, then
all you need to do is flip a ‘biased coin’ (or multi-sided die) with
the probabilities of coming up for each class equal to the
predicted probabilities from the model.

Warning: do not just classify blindly using the predict command
in sklearn!

CS109A, PROTOPAPAS, RADER

Imputation across multiple variables

If only one variable has missing entries, life is easy. But what if
all the predictor variables have a little bit of missingness (with
some observations having multiple entries missing)? How can
we handle that?

It’s an iterative process. Impute X1 based on X2, ..., Xp. Then
impute X2 based on X1 and X3, ..., Xp. And continue down the
line.

Any issues? Yes, not all of the missing values may be imputed
with just one ’run’ through the data set. So you will have to
repeat these ’runs’ until you have a completely filled in data set.

CS109A, PROTOPAPAS, RADER

Multiple imputation: beyond this class

What is an issue with treating your now ‘complete’ data set (a mixture
of actually observed values and imputed values) as simply all
observed values?
Any inferences or predictions carried out will be tuned and potentially
overfit to the random entries imputed for the missing entries. How
can we prevent this phenomenon?
By performing multiple imputation: rerun the imputation algorithm
many times, refit the model on the response many times (one time
each), and then ’average’ the predictions or estimates of β
coefficients to perform inferences (also incorporating the uncertainty
involved).
Note: this is beyond what we would expect in this class. But it
generally a good thing to be aware of.

