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Lecture Outline 

•  k-NN review 

•  k-NN for Classification 

•  Dealing with Missingness 

•  Types of Missingness 

•  Imputation Methods 
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k-Nearest Neighbors  
 

We’ve already seen the k-NN method for predicting a 
quantitative response (it was the very first method we 
introduced). How was k-NN implemented in the Regression 
setting (quantitative response)?  
The approach was simple: to predict an observation’s response, 
use the other available observations that are most similar to it.  
For a specified value of k, each observation’s outcome is 
predicted to be the average of the k-closest observations as 
measured by some distance of the predictor(s).  
With one predictor, the method was easily implemented.  
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Review: Choice of k  

How well the predictions perform is related to the choice of k.  
What will the predictions look like if k is very small? What if it is 
very large? 
 
More specifically, what will the predictions be for new 
observations if k = n? 
 
 
A picture is worth a thousand words...  

𝑌 	
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Choice of k matters 
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k-NN for Classification 
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k-NN for Classification 
 

How can we modify the k-NN approach for classification?  
The approach here is the same as for k-NN regression: use the 
other available observations that are most similar to the 
observation we are trying to predict (classify into a group) based 
on the predictors at hand.  
 
How do we classify which category a specific observation 
should be in based on its nearest neighbors?  
The category that shows up the most among the nearest 
neighbors.  
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k-NN for Classification: formal definition  
 
 The k-NN classifier first identifies the k points in the training data 

that are closest to x0, represented by 𝒩↓0 . It then estimates the 
conditional probability for class j as the fraction of points in 𝒩↓0  
whose response values equal j:  
 
 
 
Then, the k-NN classifier applies Bayes rule and classifies the 
test observation, x0, to the class with largest estimated 
probability.  

𝑃𝑌=𝑗�𝑋= 𝑥↓0  = 1/𝑘 ∑𝑖∈𝒩↓0 ↑▒𝐼( 𝑦↓𝑖 =𝑗) 	
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k-NN for Classification (cont.) 
 

There are some issues that may arise:  
•  How can we handle a tie?  
•  What could be a major problem with always classifying to the 

most common group amongst the neighbors? 
 

•  How can we handle this? 
 

With	a	coin	flip!		

If	one	category	is	much	more	common	than	the	others	then	
all	the	predictions	may	be	the	same!		

Rather	than	classifying	with	the	most	likely	group,	use	a	biased	
coin	flip	to	decide	which	group	to	classify	to.	
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k-NN with Multiple Predictors  

How could we extend k-NN (both regression and classification) 
when there are multiple predictors?  
We would need to define a measure of distance for observations 
in order to which are the most similar to the observation we are 
trying to predict.  
Euclidean distance is a good option. To measure the distance of 
a new observation, x0 from each observation in the data set, xi:  

𝐷↑2 (𝒙↓𝑖 , 𝒙↓0 )=∑𝑗=1↑𝑃▒(𝑥↓𝑖,𝑗 − 𝑥↓0,𝑗 )↑2  	
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k-NN with Multiple Predictors (cont.)  

But what must we be careful about when measuring distance?  
1. Differences in variability in our predictors!  
2. Having a mixture of quantitative and categorical predictors.  
So what should be good practice? To determine closest 
neighbors when P > 1, you should first standardize the 
predictors! And you can even standardize the binaries if you 
want to include them.  
How else could we determine closeness in this multi-
dimensional setting?  
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k-NN Classification in Python 

Performing kNN 
classification in python is 
done via 
KNeighborsClassifier 
in  sklearn.neighbors. 
 
An example: 
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Classification Boundaries in k-NN Classification 

What will the classification boundaries look line in k-NN 
classification?  With one predictors?  With 2 predictors?  With 3+ 
predictors? 
How can we visualize these?  In 1D?  In 2D?  In 3D+? 
How do they compare to Logistic Regression classification 
boundaries? 
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Dealing with Missingness 
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What is missing data? k-Nearest Neighbors  
 

Often times when data is collected, there are some missing 
values apparent in the dataset.  This leads to a few questions to 
consider: 
 
•  How does this show up in pandas?  
•  How does pandas and sklearn handle these NaNs? 
•  How does this effect our modeling? 
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Naively handling missingness 

 
What is the simplest way to handle missing data? 
 
•  Impute the mean (if quantitative) or most common class (if 

categorical) for all missing values. 
•  How does pandas and sklearn handle these NaNs?  
 
What are some consequences in handling missingness in this 
fashion? 
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Types of Missingness 
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Sources of Missingness 

Missing data can arise from various places in data: 
•  A survey was conducted and values were just randomly 

missed when being entered in the computer. 
•  A respondent chooses not to respond to a question like 

`Have you ever done cocaine?'. 
•  You decide to start collecting a new variable (like Mac vs. PC) 

partway through the data collection of a study. 
•  You want to measure the speed of meteors, and some 

observations are just 'too quick' to be measured properly. 
The source of missing values in data can lead to the major types 
of missingness: 
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Types of Missingness 

There are 3 major types of missingness to be concerned about: 
1.  Missing Completely at Random (MCAR) - the probability of 

missingness in a variable is the same for all units.  Like 
randomly poking holes in a data set. 

2.  Missing at Random (MAR) - the probability of missingness 
in a variable depends only on available information (in other 
predictors). 

3.  Missing Not at Random (MNAR) - the probability of 
missingness depends on information that has not been 
recorded and this information also predicts the missing 
values. 

What are examples of each these 3 types? 
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Missing completely at random (MCAR) 

Missing Completely at Random is the best case scenario, and 
the easiest to handle: 
•  Examples: a coin is flipped to determine whether an entry is 

removed.  Or when values were just randomly missed when 
being entered in the computer. 

•  Effect if you ignore: there is no effect on inferences 
(estimates of beta). 

•  How to handle: lots of options, but best to impute (more on 
next slide). 
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Missing  at random (MAR) 

Missing at random is still a case that can be handled. 
•  Example(s): men and women respond to the question "have 

you ever felt harassed at work?" at different rates (and may 
be harassed at different rates). 

•  Effect if you ignore: inferences are biased (estimates of beta) 
and predictions are usually worsened. 

•  How to handle: use the information in the other predictors to  
build a model and `impute' a value for the missing entry. 

 
Key: we can fix any biases by modeling and imputing the 
missing values based on what is observed! 
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Missing Not at Random (MNAR) 

Missing Not at Random is the worst case scenario, and 
impossible to handle: 
•  Example(s): patients drop out of a study because they 

experience some really bad side effect that was not 
measured.  Or cheaters are less likely to respond when 
asked if you've ever cheated. 

•  Effect if you ignore: there is no effect on inferences 
(estimates of beta) or predictions. 

•  How to handle: you can 'improve' things by dealing with it like 
it is MAR, but you [likely] may never completely fix the bias. 
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What type of missingness is present? 

Can you ever tell based on your data what type of missingness 
is actually present? 
 

Since we asked the question, the answer must be no.  
It generally cannot be determined whether data really are 
missing at random, or whether the missingness depends on 
unobserved predictors or the missing data themselves. The 
problem is that these potential “lurking variables” are 
unobserved (by definition) and so can never be completely ruled 
out. 
 

In practice, a model with as many predictors as possible is used 
so that the `missing at random' assumption is reasonable. 
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Imputation Methods 
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Handling Missing Data 

When encountering missing data, the approach to handling it 
depends on:  
1.  whether the missing values are in the response or in the 

predictors.  Generally speaking, it is much easier to handle 
missingness in predictors. 

2.  whether the variable is quantitative or categorical.   
3.  how much missingness is present in the variable.  If there is 

too much missingness, you may be doing more damage than 
good. 

Generally speaking, it is a good idea to attempt to impute (or 
`fill in') entries for missing values in a variable (assuming your 
method of imputation is a good one). 
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Imputation Methods 

There are several different approaches to imputing missing values: 
1.  Plug in the mean or median (quantitative) or most common class 

(categorical) for all missing values in a variable. 
2.  Create a new variable that is an indicator of missingness, and include it 

in any model to predict the response (also plug in zero or the mean in 
the actual variable). 

3.  Hot deck imputation: for each missing entry, randomly select an 
observed entry in the variable and plug it in. 

4.  Model the imputation: plug in predicted values (𝑦 ) from a model based 
on the other observed predictors. 

5.  Model the imputation with uncertainty: plug in predicted values plus 
randomness (𝑦 +𝜖) from a model based on the other observed 
predictors. 

What are the advantages and disadvantages of each approach? 
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Schematic: imputation through modeling  

How do we use models to fill in missing data?  
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Schematic: imputation through modeling  

How do we use models to fill in missing data?  
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Schematic: imputation through modeling  

How do we use models to fill in missing data? Using k-NN for k 
= 2?  
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Schematic: imputation through modeling  

How do we use models to fill in missing data? Using k-NN for k 
= 2?  
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Schematic: imputation through modeling  

How do we use models to fill in missing data? Using linear 
regression?  
 
 
 
 
 
 
 
Where m and b are computed from the observations (rows) that 
do not have missingness (we should call them b = 𝛽↓0  and m = 
𝛽↓1 ).  
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Imputation through modeling with uncertainty  

The schematic in the last few slides ignores the fact of imputing 
with uncertainty. What happens if you ignore this fact and just 
use the ‘best’ model to impute values solely on 𝑦 ?  
 
The distribution of the imputed values will be too narrow and not 
represent real data (see next slide for illustration). The goal is to 
impute values that include the uncertainty of the model.  
 
How can this be done in practice in k-NN? In linear regression? 
In logistic regression?  
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Imputation through modeling with uncertainty: an illustration  
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Imputation through modeling with uncertainty: an illustration  

Recall the probabilistic model in linear regression:  
 
where 𝜖~𝑁(0, 𝜎↑2 ).  How can we take advantage of this model  
to impute with uncertainty?  
It’s a 3 step process:  
1.  Fit a model to predict the predictor variable with missingness 

from all the other predictors.  
2.  Predict the missing values from the model in the previous 

part.  
3.  Add in a measure of uncertainty to this prediction by 

randomly sampling from a 𝑁(0, 𝜎↑2 ) distribution, where 𝜎↑2  
is the mean square error (MSE) from the model.  
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Imputation through modeling with uncertainty: k-NN regression  

How can we use k-NN regression to impute values that mimic 
the error in our observations?  
 
Two ways:  
•  Use k = 1.  
•  Use any other k, but randomly select from the nearest 

neighbors in 𝒩↓0 . This can be done with equal probability or 
with some weighting (inverse to the distance measure used).  
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Imputation through modeling with uncertainty: classifiers  

For classifiers, this imputation with uncertainty/randomness is a 
little easier process. How can it be implemented?  
 
If a classification model (logistic, k-NN, etc...) is used to predict 
the variable with missingness on the observed predictors, then 
all you need to do is flip a ‘biased coin’ (or multi-sided die) with 
the probabilities of coming up for each class equal to the 
predicted probabilities from the model.  
 
Warning: do not just classify blindly using the predict command 
in sklearn!  
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Imputation across multiple variables  

If only one variable has missing entries, life is easy. But what if 
all the predictor variables have a little bit of missingness (with 
some observations having multiple entries missing)? How can 
we handle that?  
 
It’s an iterative process. Impute X1 based on X2, ..., Xp. Then 
impute X2 based on X1 and X3, ..., Xp. And continue down the 
line.  
 
Any issues? Yes, not all of the missing values may be imputed 
with just one ’run’ through the data set. So you will have to 
repeat these ’runs’ until you have a completely filled in data set.  
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Multiple imputation: beyond this class  

What is an issue with treating your now ‘complete’ data set (a mixture 
of actually observed values and imputed values) as simply all 
observed values?  
Any inferences or predictions carried out will be tuned and potentially 
overfit to the random entries imputed for the missing entries. How 
can we prevent this phenomenon?  
By performing multiple imputation: rerun the imputation algorithm 
many times, refit the model on the response many times (one time 
each), and then ’average’ the predictions or estimates of β 
coefficients to perform inferences (also incorporating the uncertainty 
involved).  
Note: this is beyond what we would expect in this class. But it 
generally a good thing to be aware of.  


