
CS109A Introduction to Data Science
Pavlos Protopapas and Kevin Rader

Lecture 12: Perceptron and Back Propagation

CS109A, PROTOPAPAS, RADER

Outline

1. Review of Classification and Logistic Regression

2. Introduction to Optimization

– Gradient Descent

– Stochastic Gradient Descent

3. Single Neuron Network (‘Perceptron’)

4. Multi-Layer Perceptron

5. Back Propagation

2

CS109A, PROTOPAPAS, RADER

Outline

1. Review of Classification and Logistic Regression

2. Introduction to Optimization

– Gradient Descent

– Stochastic Gradient Descent

3. Single Neuron Network (‘Perceptron’)

4. Multi-Layer Perceptron

5. Back Propagation

3

CS109A, PROTOPAPAS, RADER

Classification and Logistic Regression

4

CS109A, PROTOPAPAS, RADER

Classification

Methods that are centered around modeling and prediction of a
quantitative response variable (ex, number of taxi pickups, number of bike
rentals, etc) are called regressions (and Ridge, LASSO, etc).

When the response variable is categorical, then the problem is no longer
called a regression problem but is instead labeled as a classification
problem.

The goal is to attempt to classify each observation into a category (aka,
class or cluster) defined by Y, based on a set of predictor variables X.

5

CS109A, PROTOPAPAS, RADER

Heart Data

Age Sex ChestPain RestBP Chol Fbs RestECG MaxHR ExAng Oldpeak Slope Ca Thal AHD

63 1 typical 145 233 1 2 150 0 2.3 3 0.0 fixed No

67 1 asymptomatic 160 286 0 2 108 1 1.5 2 3.0 normal Yes

67 1 asymptomatic 120 229 0 2 129 1 2.6 2 2.0 reversable Yes

37 1 nonanginal 130 250 0 0 187 0 3.5 3 0.0 normal No

41 0 nontypical 130 204 0 2 172 0 1.4 1 0.0 normal No

response variable Y
is Yes/No

6

CS109A, PROTOPAPAS, RADER

Heart Data: logistic estimation

We'd like to predict whether or not a person has a heart disease. And
we'd like to make this prediction, for now, just based on the MaxHR.

7

CS109A, PROTOPAPAS, RADER

Logistic Regression

Logistic Regression addresses the problem of estimating a
probability, 𝑃 𝑦 = 1 , given an input X. The logistic regression
model uses a function, called the logistic function, to model
𝑃 𝑦 = 1 :

P (Y = 1) =
e�0+�1X

1 + e�0+�1X
=

1

1 + e�(�0+�1X)

8

CS109A, PROTOPAPAS, RADER

Logistic Regression

As a result the model will predict 𝑃 𝑦 = 1 with an 𝑆-shaped curve, which
is the general shape of the logistic function.

𝛽(shifts the curve right or left by c = −+,
+-

.

𝛽.	controls how steep the 𝑆-shaped curve is distance from ½ to ~1 or ½\ to
~0 to ½ is 0

+-

Note: if 𝛽.	is positive, then the predicted 𝑃 𝑦 = 1 	goes from zero for small
values of 𝑋	to one for large values of 𝑋 and if 𝛽.	is negative, then has the
𝑃 𝑦 = 1 	opposite association.

9

CS109A, PROTOPAPAS, RADER

Logistic Regression

−
𝛽(
𝛽.

2𝛽.

𝛽.
4

10

CS109A, PROTOPAPAS, RADER

Logistic Regression

P (Y = 1) =
1

1 + e�(�0+�1X)

11

CS109A, PROTOPAPAS, RADER

Logistic Regression

P (Y = 1) =
1

1 + e�(�0+�1X)

12

CS109A, PROTOPAPAS, RADER

Estimating the coefficients for Logistic Regression

Find the coefficients that minimize the loss function

ℒ 𝛽(, 𝛽. = −6[𝑦8 log 𝑝8 + 1 − 𝑦8 log(1 − 𝑝8)]
�

8

13

CS109A, PROTOPAPAS, RADER

But what is the idea?

14

Start with Regression or Logistic Regression

𝑌 = 𝑓(𝛽(+ 𝛽.𝑥. + 𝛽0𝑥0 + 𝛽E𝑥E + 𝛽F𝑥F)

𝑥.

𝑥0

𝑥E

𝑥F

Coefficients or WeightsIntercept or Bias

f(X)= .
.GHIJKL

Classification

f 𝑋 = 𝑊N𝑋

Regression

𝑊N = 𝑊(,𝑊., … ,𝑊F
= 	 [𝛽(, 𝛽., … , 𝛽F]

CS109A, PROTOPAPAS, RADER

But what is the idea?

15

Start with all randomly selected weights. Most likely it will perform horribly.
For example, in our heart data, the model will be giving us the wrong answer.

𝑝̂ = 0.9 → 𝑌𝑒𝑠

𝑀𝑎𝑥𝐻𝑅 = 200

𝐴𝑔𝑒 = 52

𝑆𝑒𝑥 = 𝑀𝑎𝑙𝑒

𝐶ℎ𝑜𝑙 = 152
Bad	Computer

y=No
Correct answer

CS109A, PROTOPAPAS, RADER

But what is the idea?

16

Start with all randomly selected weights. Most likely it will perform horribly.
For example, in our heart data, the model will be giving us the wrong answer.

𝑝̂ = 0.4 → 𝑁𝑜

𝑀𝑎𝑥𝐻𝑅 = 170

𝐴𝑔𝑒 = 42

𝑆𝑒𝑥 = 𝑀𝑎𝑙𝑒

𝐶ℎ𝑜𝑙 = 342

y=Yes

Bad	Computer

Correct answer

CS109A, PROTOPAPAS, RADER

But what is the idea?

17

• Loss	Function:	Takes	all	of	these	results	and	averages	them	and	tells	us	how	bad	or	
good	the	computer	or	those	weights		are.	

• Telling the computer how bad or good is, does not help.

• You want to tell it how to change those weights so it gets better.

Loss function: ℒ 𝑤(,𝑤., 𝑤0, 𝑤E, 𝑤F

For now let’s only consider one weight, ℒ 𝑤.

CS109A, PROTOPAPAS, RADER

Minimizing the Loss function

18

To find the optimal point of a function ℒ 𝑊

And find the 𝑊 that satisfies that equation. Sometimes there is no explicit
solution for that.

Ideally we want to know the value of 𝑤. that gives the minimul ℒ 𝑊

𝑑ℒ(𝑊)
𝑑𝑊

= 0

CS109A, PROTOPAPAS, RADER

Minimizing the Loss function

19

A more flexible method is

• Start from any point
• Determine which direction to go to reduce the loss (left or right)

• Specifically, we can calculate the slope of the function at this point

• Shift to the right if slope is negative or shift to the left if slope is positive

• Repeat

CS109A, PROTOPAPAS, RADER

Minimization of the Loss Function

If the step is proportional to the slope then you avoid overshooting the
minimum.

Question: What is the mathematical function that describes the slope?

Question: How do we generalize this to more than one predictor?

Question: What do you think it is a good approach for telling the model how to
change (what is the step size) to become better?

20

CS109A, PROTOPAPAS, RADER

Minimization of the Loss Function

If the step is proportional to the slope then you avoid overshooting the
minimum.

Question: What is the mathematical function that describes the slope?
Derivative
Question: How do we generalize this to more than one predictor?

Take the derivative with respect to each coefficient and do the same
sequentially
Question: What do you think it is a good approach for telling the model how to
change (what is the step size) to become better?

More on this later

21

CS109A, PROTOPAPAS, RADER

Let’s play the Pavlos game

We know that we want to go in the opposite direction of the derivative and
we know we want to be making a step proportionally to the derivative.

Making a step means:

22

𝑤gHh = 𝑤ijk + 𝑠𝑡𝑒𝑝

Opposite direction of the derivative means:

𝑤gHh = 𝑤ijk − 𝜆
𝑑ℒ
𝑑𝑤

Change to more conventional notation:

𝑤(8G.) = 𝑤(8) − 𝜆
𝑑ℒ
𝑑𝑤

Learning	
Rate

CS109A, PROTOPAPAS, RADER

Gradient Descent

• Algorithm for optimization of first
order to finding a minimum of a
function.

• It is an iterative method.

• L is decreasing in the direction of
the negative derivative.

• The learning rate is controlled by
the magnitude of 𝜆.

23

L

w

- +

𝑤(8G.) = 𝑤(8) − 𝜆
𝑑ℒ
𝑑𝑤

CS109A, PROTOPAPAS, RADER

Considerations

• We still need to derive the derivatives.

• We need to know what is the learning rate or how to set it.

• We need to avoid local minima.

• Finally, the full likelihood function includes summing up all
individual ‘errors’. Unless you are a statistician, this can be
hundreds of thousands of examples.

24

CS109A, PROTOPAPAS, RADER

Considerations

• We still need to derive the derivatives.

• We need to know what is the learning rate or how to set it.

• We need to avoid local minima.

• Finally, the full likelihood function includes summing up all
individual ‘errors’. Unless you are a statistician, this can be
hundreds of thousands of examples.

25

CS109A, PROTOPAPAS, RADER

Derivatives: Memories from middle school

26

CS109A, PROTOPAPAS, RADER

Linear Regression

27

df

d�0
= 0) 2

X

i

(yi � �0 � �1xi)

X

i

yi � �0n� �1

X

i

xi = 0

�0 = ȳ � �1x̄

df

d�1
= 0) 2

X

i

(yi � �0 � �1xi)(�xi)

�
X

i

xiyi + �0

X

i

xi + �1

X

i

x2
i = 0

�
X

i

xiyi + (ȳ � �1x̄)
X

i

xi + �1

X

i

x2
i = 0

�1

X

i

x2
i � nx̄2

!
=
X

i

xiyi � nx̄ȳ

) �1 =

P
i xiyi � nx̄ȳP
i x

2
i � nx̄2

) �1 =

P
i(xi � x̄)(yi � ȳ)P

i(xi � x̄)2

f =
X

i

(yi � �0 � �1xi)
2

CS109A, PROTOPAPAS, RADER

Logistic Regression Derivatives

28

Can we do it?

Wolfram Alpha can do it for us!

We need a formalism to deal with these derivatives.

CS109A, PROTOPAPAS, RADER

Chain Rule

• Chain rule for computing gradients:

• 𝑦 = 𝑔 𝑥 							𝑧 = 𝑓 𝑦 = 𝑓 𝑔 𝑥

• For longer chains

29

𝜕𝑧
𝜕𝑥

=
𝜕𝑧
𝜕𝑦
𝜕𝑦
𝜕𝑥

𝒚 = 𝑔 𝒙	 							𝑧 = 𝑓 𝒚 = 𝑓 𝑔 𝒙	

𝜕𝑧
𝜕𝑥8

=6
𝜕𝑧
𝜕𝑦r

𝜕𝑦r
𝜕𝑥8

�

r

∂z
∂xi

= … ∂z
∂yj1jm

∑
j1

∑ …
∂yjm
∂xi

CS109A, PROTOPAPAS, RADER

Logistic Regression derivatives

30

ℒ =6ℒ8

�

8

= −6log 𝐿8

�

8

	 = −6[𝑦8 log 𝑝8 + 1 − 𝑦8 log(1 − 𝑝8)]
�

8

tℒ
tu

= ∑ tℒw
tu
�
8 = ∑ (�8

tℒw
x

tu
+ tℒw

y

tu
)

ℒ8 = −𝑦8 log
1

1 + 𝑒zuK{
− 1 − 𝑦8 log(1 −

1
1 + 𝑒zuK{

)

For logistic regression, the –ve log of the likelihood is:

ℒ8 = ℒ8| + ℒ8}

To simplify the analysis let us split it into two parts,

So the derivative with respect to W is:

CS109A, PROTOPAPAS, RADER 31

Variables Partial	derivatives Partial	derivatives

𝜉. = −𝑊N𝑋
𝜕𝜉.
𝜕𝑊

= −𝑋
𝜕𝜉.
𝜕𝑊

= −𝑋

𝜉0 = 𝑒�- = 𝑒zuK{
𝜕𝜉0
𝜕𝜉.

= 𝑒�-
𝜕𝜉0
𝜕𝜉.

= 𝑒zuK{

𝜉E = 1 + 𝜉0 = 1 + 𝑒zuK{
𝜕𝜉E
𝜕𝜉0

= 1 t��
t��

=1

𝜉F =
1
𝜉E
=

1
1 + 𝑒zuK{

= 𝑝
𝜕𝜉F
𝜕𝜉E

= −
1
𝜉E0

𝜕𝜉F
𝜕𝜉E

= −
1

1 + 𝑒zuK{ 0

𝜉� = log 𝜉F = log 𝑝	 = log
1

1 + 𝑒zuK{

𝜕𝜉�
𝜕𝜉F

=
1
𝜉F

𝜕𝜉�
𝜕𝜉F

= 1 + 𝑒zuK{

ℒ8| = −𝑦𝜉�
𝜕ℒ
𝜕𝜉�

= −𝑦
𝜕ℒ
𝜕𝜉�

= −𝑦

𝜕ℒ8|

𝜕𝑊
=
𝜕ℒ8
𝜕𝜉�

𝜕𝜉�
𝜕𝜉F

𝜕𝜉F
𝜕𝜉E

𝜕𝜉E
𝜕𝜉0

𝜕𝜉0
𝜕𝜉.

𝜕𝜉.
𝜕𝑊

𝜕ℒ8|

𝜕𝑊
= −𝑦𝑋𝑒zuK{ 1

1 + 𝑒zuK{

ℒ8| = −𝑦8 log
1

1 + 𝑒zuK{

CS109A, PROTOPAPAS, RADER 32

Variables derivatives Partial	derivatives	wrt to	X,W

𝜉. = −𝑊N𝑋 𝜕𝜉.
𝜕𝑊

= −𝑋
𝜕𝜉.
𝜕𝑊

= −𝑋

𝜉0 = 𝑒�- = 𝑒zuK{ 𝜕𝜉0
𝜕𝜉.

= 𝑒�-
𝜕𝜉0
𝜕𝜉.

= 𝑒zuK{

𝜉E = 1 + 𝜉0 = 1 + 𝑒zuK{ 𝜕𝜉E
𝜕𝜉0

= 1 t��
t0

=1

𝜉F =
1
𝜉E
=

1
1 + 𝑒zuK{

= 𝑝
𝜕𝜉F
𝜕𝜉E

= −
1
𝜉E0

𝜕𝜉F
𝜕𝜉E

= −
1

1 + 𝑒zuK{ 0

𝜉� = 1 − 𝜉F = 1 −
1

1 + 𝑒zuK{
𝜕𝜉�
𝜕𝜉F

= −1 t��
t��

=-1

𝜉� = log 𝜉� = log(1 − 𝑝) 	= log
1

1 + 𝑒zuK{
𝜕𝜉�
𝜕𝜉�

=
1
𝜉�

𝜕𝜉�
𝜕𝜉�

=
1 + 𝑒zuK{	
𝑒zuK{

ℒ8} = (1 − 𝑦)𝜉� 𝜕ℒ
𝜕𝜉�

= 1 − 𝑦
𝜕ℒ
𝜕𝜉�

= 1 − 𝑦

𝜕ℒ8}

𝜕𝑊
=
𝜕ℒ8}

𝜕𝜉�
𝜕𝜉�
𝜕𝜉�

𝜕𝜉�
𝜕𝜉F

𝜕𝜉F
𝜕𝜉E

𝜕𝜉E
𝜕𝜉0

𝜕𝜉0
𝜕𝜉.

𝜕𝜉.
𝜕𝑊

𝜕ℒ8}

𝜕𝑊
= (1 − 𝑦)𝑋

1

1 + 𝑒zuK{

ℒ8} = −(1 − 𝑦8) log[1 −
1

1 + 𝑒zuK{
]

CS109A, PROTOPAPAS, RADER

Learning Rate

33

CS109A, PROTOPAPAS, RADER

Learning Rate

Trial and Error.

There are many alternative methods which address how to set
or adjust the learning rate, using the derivative or second
derivatives and or the momentum. To be discussed in the next
lectures on NN.

34

∗ J. Nocedal y S. Wright, “Numerical optimization”, Springer, 1999 🔗
∗ TLDR: J. Bullinaria, “Learning with Momentum, Conjugate Gradient

Learning”, 2015 🔗

CS109A, PROTOPAPAS, RADER

Local and Global minima

35

CS109A, PROTOPAPAS, RADER

Local vs Global Minima

36

L

𝛉

CS109A, PROTOPAPAS, RADER

Local vs Global Minima

37

L

𝛉

CS109A, PROTOPAPAS, RADER

Local vs Global Minima

No guarantee that we get the global minimum.

Question: What would be a good strategy?

38

CS109A, PROTOPAPAS, RADER

Large data

39

CS109A, PROTOPAPAS, RADER

Batch and Stochastic Gradient Descent

Instead of using all the examples for every step, use a subset
of them (batch).

For each iteration k, use the following loss function to derive
the derivatives:

which is an approximation to the full Loss function.

40

ℒ = −6[𝑦8 log 𝑝8 + 1 − 𝑦8 log(1 − 𝑝8)]
�

8

ℒ� = − 6[𝑦8 log 𝑝8 + 1 − 𝑦8 log(1 − 𝑝8)]
�

8∈��

CS109A, PROTOPAPAS, RADER

Batch and Stochastic Gradient Descent

41

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER

Batch and Stochastic Gradient Descent

42

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER

Batch and Stochastic Gradient Descent

43

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER

Batch and Stochastic Gradient Descent

44

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER

Batch and Stochastic Gradient Descent

45

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER

Batch and Stochastic Gradient Descent

46

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER

Batch and Stochastic Gradient Descent

47

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER

Batch and Stochastic Gradient Descent

48

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER

Batch and Stochastic Gradient Descent

49

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER

Artificial Neural Networks (ANN)

50

CS109A, PROTOPAPAS, RADER

Logistic Regression Revisited

51

𝑥8 Affine ℎ8 = 𝛽(+ 𝛽.𝑥8 Activation 𝑝8 =
1

1 + 𝑒z�w
ℒ8 𝛽 = −𝑦8 ln 𝑝8 − 1 − 𝑦8 ln	(1 − 𝑝8)Loss	Fun

𝑥� ℒ� 𝛽 = −𝑦� ln 𝑝� − 1 − 𝑦� ln	(1 − 𝑝�)Affine ℎ� = 𝛽(+ 𝛽.𝑥� Activation 𝑝8 =
1

1 + 𝑒z�� Loss	Fun

ℒ(𝛽) =6ℒ8 𝛽
g

8
Affine𝑋 ℎ = 𝛽(+ 𝛽.𝑋 Activation 𝑝 =

1
1 + 𝑒z� Loss	Fun

…

CS109A, PROTOPAPAS, RADER

Build our first ANN

52

ℒ(𝛽) =6ℒ8 𝛽
g

8
Affine𝑋 ℎ = 𝛽(+ 𝛽.𝑋 Activation 𝑝 =

1
1 + 𝑒z� Loss	Fun

ℒ(𝛽) =6ℒ8 𝛽
g

8
Affine𝑋 ℎ = 𝛽N𝑋 Activation 𝑝 =

1
1 + 𝑒z� Loss	Fun

ℒ(𝑊) =6ℒ8 𝑊
g

8
Affine𝑋 ℎ = 𝑊N𝑋 Activation 𝑦 =

1
1 + 𝑒z� Loss	Fun

CS109A, PROTOPAPAS, RADER

Build our first ANN

53

ℒ(𝑊) =6ℒ8 𝑊
g

8
Affine𝑋 ℎ = 𝑊N𝑋 Activation 𝑝 =

1
1 + 𝑒z� Loss	Fun

𝑋 𝑌

CS109A, PROTOPAPAS, RADER

Example Using Heart Data

54

Slightly modified data to illustrate a concept.

CS109A, PROTOPAPAS, RADER

Example Using Heart Data

55

𝑋 𝑌

CS109A, PROTOPAPAS, RADER

Example

56

𝑋 𝑌’
𝑋 𝑌

CS109A, PROTOPAPAS, RADER

Pavlos game #232

57

𝑌

𝑌′
𝑋

𝑋
W1

W2

𝑋

W1

W2

ℎ. + ℎ0

ℎ.

ℎ0

CS109A, PROTOPAPAS, RADER

Pavlos game #232

58

𝑋 𝑌
𝑋 𝑌

𝑋

W1

𝑊E

W1

W2
W2

ℎ.

ℎ0

𝑞 = 	𝑊E.ℎ. +𝑊E0ℎ0 +𝑊E(

CS109A, PROTOPAPAS, RADER

Pavlos game #232

59

𝑋 𝑌
𝑋 𝑌

𝑋

W1

𝑊E

W1

W2
W2

ℎ.

ℎ0

𝑞 = 	𝑊E.ℎ. +𝑊E0ℎ0 +𝑊E(

𝑝 =
1

1 + 𝑒z�

𝐿 = −𝑦	ln p − 1 − y ln(1 − p)
Need to learn W1, W2 and W3.

CS109A, PROTOPAPAS, RADER

Backpropagation

60

CS109A, PROTOPAPAS, RADER

Backpropagation: Logistic Regression Revisited

61

ℒ(𝛽) =6ℒ8 𝛽
g

8
Affine𝑋 ℎ = 𝛽(+ 𝛽.𝑋 Activation 𝑝 =

1
1 + 𝑒z� Loss	Fun

𝜕ℒ
𝜕𝑝

tℒ
t�
	t�
t�

tℒ
t�
	t�
t�
	t�
t+

𝜕𝑝
𝜕ℎ

= 𝜎(ℎ)(1 − 𝜎 ℎ)
𝜕ℒ
𝜕𝑝

= −𝑦
1
𝑝
− 1 − 𝑦

1
1 − 𝑝

𝜕ℎ
𝜕𝛽.

= 𝑋,
𝑑ℒ
𝑑𝛽(

= 1

𝜕ℒ
𝜕𝛽.

= −𝑋𝜎 ℎ 1 − 𝜎 ℎ [𝑦
1
𝑝
+ 1 − 𝑦

1
1 − 𝑝

]

𝜕ℒ
𝜕𝛽(

= −𝜎 ℎ 1 − 𝜎 ℎ [𝑦
1
𝑝
+ 1 − 𝑦

1
1 − 𝑝

]

CS109A, PROTOPAPAS, RADER

Backpropagation

62

1. Derivatives need to be evaluated at some values of X,y and W.
2. But since we have an expression, we can build a function that takes as

input X,y,W and returns the derivatives and then we can use gradient
descent to update.

3. This approach works well but it does not generalize. For example if the
network is changed, we need to write a new function to evaluate the
derivatives.

For example this network will need a different function for the derivatives

𝑋

W1

𝑊E

W2

𝑌

CS109A, PROTOPAPAS, RADER

Backpropagation

63

1. Derivatives need to be evaluated at some values of X,y and W.
2. But since we have an expression, we can build a function that takes as

input X,y,W and returns the derivatives and then we can use gradient
descent to update.

3. This approach works well but it does not generalize. For example if the
network is changed, we need to write a new function to evaluate the
derivatives.

For example this network will need a different function for the derivatives

𝑋

W1 𝑊E

W2

𝑌

𝑊F

𝑊�

CS109A, PROTOPAPAS, RADER

Backpropagation. Pavlos game #456

64

Need to find a formalism to calculate the derivatives of the loss wrt to
weights that is:

1. Flexible enough that adding a node or a layer or changing something
in the network won’t require to re-derive the functional form from
scratch.

2. It is exact.

3. It is computationally efficient.

Hints:

1. Remember we only need to evaluate the derivatives at 𝑋8, 𝑦8 and 𝑊(�).

2. We should take advantage of the chain rule we learned before

CS109A, PROTOPAPAS, RADER

Idea 1: Evaluate the derivative at: X={3},	y=1,	W=3		

65

Variables derivatives Value of the
variable

Value of the partial
derivative

𝑑𝝃𝒏
𝑑𝑾

𝜉. = −𝑊N𝑋
𝜕𝜉.
𝜕𝑊

= −𝑋 −9 -3 -3

𝜉0 = 𝑒�- = 𝑒zuK{
𝜕𝜉0
𝜕𝜉.

= 𝑒�- 𝑒z� 𝑒z� -3𝑒z�

𝜉E = 1 + 𝜉0 = 1 + 𝑒zuK{
𝜕𝜉E
𝜕𝜉0

= 1 1+𝑒z� 1 -3𝑒z�

𝜉F =
1
𝜉E
=

1
1 + 𝑒zuK{

= 𝑝
𝜕𝜉F
𝜕𝜉E

= −
1
𝜉E0

1
1 + 𝑒z�

1
1 + 𝑒z�

0
-3𝑒z� .

.GHI�
0

𝜉�
= log 𝜉F = log 𝑝	 = log

1
1 + 𝑒zuK{

𝜕𝜉�
𝜕𝜉F

=
1
𝜉F log

1
1 + 𝑒z�

1 + 𝑒z� -3𝑒z� .
.GHI�

ℒ8| = −𝑦𝜉�
𝜕ℒ
𝜕𝜉�

= −𝑦 − log
1

1 + 𝑒z�
−1 3𝑒z� .

.GHI�

𝜕ℒ8|

𝜕𝑊
=
𝜕ℒ8
𝜕𝜉�

𝜕𝜉�
𝜕𝜉F

𝜕𝜉F
𝜕𝜉E

𝜕𝜉E
𝜕𝜉0

𝜕𝜉0
𝜕𝜉.

𝜕𝜉.
𝜕𝑊 −3 0.00037018372

CS109A, PROTOPAPAS, RADER

Basic functions

66

We still need to derive derivatives	L

Variables derivatives Value of the
variable

Value of the partial
derivative

𝑑𝝃𝒏
𝑑𝑾

𝜉. = −𝑊N𝑋
𝜕𝜉.
𝜕𝑊

= −𝑋 −9 -3 -3

𝜉0 = 𝑒�- = 𝑒zuK{
𝜕𝜉0
𝑑𝜕𝜉.

= 𝑒�- 𝑒z� 𝑒z� -3𝑒z�

𝜉E = 1 + 𝜉0 = 1 + 𝑒zuK{
𝜕𝜉E
𝜕𝜉0

= 1 1+𝑒z� 1 -3𝑒z�

𝜉F =
1
𝜉E
=

1
1 + 𝑒zuK{

= 𝑝
𝜕𝜉F
𝜕𝜉E

= −
1
𝜉E0

1
1 + 𝑒z�

1
1 + 𝑒z�

0
-3𝑒z� .

.GHI�
0

𝜉� = log 𝜉F = log 𝑝	 = log
1

1 + 𝑒zuK{

𝜕𝜉�
𝜕𝜉F

=
1
𝜉F log

1
1 + 𝑒z�

1 + 𝑒z� -3𝑒z� .
.GHI�

ℒ8| = −𝑦𝜉�
𝜕ℒ
𝜕𝜉�

= −𝑦 − log
1

1 + 𝑒z�
−1 3𝑒z� .

.GHI�

𝜕ℒ8|

𝜕𝑊
=
𝜕ℒ8
𝜕𝜉�

𝜕𝜉�
𝜕𝜉F

𝜕𝜉F
𝜕𝜉E

𝜕𝜉E
𝜕𝜉0

𝜕𝜉0
𝜕𝜉.

𝜕𝜉.
𝜕𝑊 −3 0.00037018372

CS109A, PROTOPAPAS, RADER

Basic functions

67

Notice though those are basic functions that my grandparent can do

𝜉(= 𝑋
𝜕𝜉(
𝜕𝑋

= 1 def x0(x):
return X

def derx0():
return 1

𝜉. = −𝑊N𝜉(
𝜕𝜉.
𝜕𝑊

= −𝑋 def x1(a,x):
return –a*X

def derx1(a,x):
return -a

𝜉0 = e�-
𝜕𝜉0
𝜕𝜉.

= 𝑒�- def x2(x):
return np.exp(x)

def derx2(x):
return np.exp(x)

𝜉E = 1 + 𝜉0
𝜕𝜉E
𝜕𝜉0

= 1 def x3(x):
return 1+x

def derx3(x):
return 1

𝜉F =
1
𝜉E

𝜕𝜉F
𝜕𝜉E

= −
1
𝜉E0

def der1(x):
return 1/(x)

def derx4(x):
return -(1/x)**(2)

𝜉� = log 𝜉F
𝜕𝜉�
𝜕𝜉F

=
1
𝜉F

def der1(x):
return np.log(x)

def derx5(x)
return 1/x

ℒ8| = −𝑦𝜉�
𝜕ℒ
𝜕𝜉�

= −𝑦 def der1(y,x):
return –y*x

def derL(y):
return -y

CS109A, PROTOPAPAS, RADER

Putting it altogether

1. We specify the network structure

68

𝑋

W1 𝑊E

W2

𝑌
𝑊F

𝑊�

2. We create the computational graph …

What is computational graph?

CS109A, PROTOPAPAS, RADER 69

XW𝜉(= 𝑊

×
𝜉. = 𝑊N𝑋
𝜉.�=X

𝑒𝑥𝑝𝜉0 = 𝑒z�-
𝜉0� = −𝑒z�-

+𝜉E = 1 + 𝑒zuK{

÷
𝜉F =

1
1 + 𝑒zuK{ Log

𝜉� = log
1

1 + 𝑒zuK{

1

-

𝜉� = 1 −
1

1 + 𝑒zuK{

log

𝜉¡ = log(1 −
1

1 + 𝑒zuK{
)

1-y

×

𝜉¢ = 1 − y log(1 −
1

1 + 𝑒zuK{
)

y ×

𝜉� = ylog(
1

1 + 𝑒zuK{
)

+

−ℒ = 𝜉� = ylog(
1

1 + 𝑒zuK{
) +	 1 − y log(1 −

1
1 + 𝑒zuK{

)

−

Computational Graph

CS109A, PROTOPAPAS, RADER

Putting it altogether

1. We specify the network structure

70

𝑋

W1 𝑊E

W2

𝑌
𝑊F

𝑊�

• We create the computational graph.

• At each node of the graph we build two functions: the evaluation of
the variable and its partial derivative with respect to the previous
variable (as shown in the table 3 slides back)

• Now we can either go forward or backward depending on the situation.
In general, forward is easier to implement and to understand. The
difference is clearer when there are multiple nodes per layer.

CS109A, PROTOPAPAS, RADER

Forward mode: Evaluate the derivative at: X={3},	y=1,	W=3		

71

Variables derivatives Value of the
variable

Value of the partial
derivative

𝑑ℒ
𝑑𝝃𝒏

𝜉. = −𝑊N𝑋
𝜕𝜉.
𝜕𝑊

= −𝑋 −9 -3 -3

𝜉0 = 𝑒�- = 𝑒zuK{
𝜕𝜉0
𝜕𝜉.

= 𝑒�- 𝑒z� 𝑒z� -3𝑒z�

𝜉E = 1 + 𝜉0 = 1 + 𝑒zuK{
𝜕𝜉E
𝜕𝜉0

= 1 1+𝑒z� 1 -3𝑒z�

𝜉F =
1
𝜉E
=

1
1 + 𝑒zuK{

= 𝑝
𝜕𝜉F
𝜕𝜉E

= −
1
𝜉E0

1
1 + 𝑒z�

1
1 + 𝑒z�

0
-3𝑒z� .

.GHI�
0

𝜉�
= log 𝜉F = log 𝑝	 = log

1
1 + 𝑒zuK{

𝜕𝜉�
𝜕𝜉F

=
1
𝜉F log

1
1 + 𝑒z�

1 + 𝑒z� -3𝑒z� .
.GHI�

ℒ8| = −𝑦𝜉�
𝜕ℒ
𝜕𝜉�

= −𝑦 − log
1

1 + 𝑒z�
−1 3𝑒z� .

.GHI�

𝜕ℒ8|

𝜕𝑊
=
𝜕ℒ8
𝜕𝜉�

𝜕𝜉�
𝜕𝜉F

𝜕𝜉F
𝜕𝜉E

𝜕𝜉E
𝜕𝜉0

𝜕𝜉0
𝜕𝜉.

𝜕𝜉.
𝜕𝑊 −3 0.00037018372

CS109A, PROTOPAPAS, RADER

Backward mode: Evaluate the derivative at: X={3},	y=1,	W=3		

72

Variables derivatives Value of the
variable

Value of the partial
derivative

𝜉. = −𝑊N𝑋
𝜕𝜉.
𝜕𝑊

= −𝑋 −9 -3

𝜉0 = 𝑒�- = 𝑒zuK{
𝜕𝜉0
𝜕𝜉.

= 𝑒�- 𝑒z� 𝑒z�

𝜉E = 1 + 𝜉0 = 1 + 𝑒zuK{
𝜕𝜉E
𝜕𝜉0

= 1 1+𝑒z� 1

𝜉F =
1
𝜉E
=

1
1 + 𝑒zuK{

= 𝑝
𝜕𝜉F
𝜕𝜉E

= −
1
𝜉E0

1
1 + 𝑒z�

1
1 + 𝑒z�

0

𝜉� = log 𝜉F = log 𝑝	 = log
1

1 + 𝑒zuK{

𝜕𝜉�
𝜕𝜉F

=
1
𝜉F

log
1

1 + 𝑒z�
1 + 𝑒z�

ℒ8| = −𝑦𝜉�
𝜕ℒ
𝜕𝜉�

= −𝑦 − log
1

1 + 𝑒z�
−1

𝜕ℒ8|

𝜕𝑊
=
𝜕ℒ8
𝜕𝜉�

𝜕𝜉�
𝜕𝜉F

𝜕𝜉F
𝜕𝜉E

𝜕𝜉E
𝜕𝜉0

𝜕𝜉0
𝜕𝜉.

𝜕𝜉.
𝜕𝑊 Type	equation	here.

S
tore all th

ese valu
es

