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Lecture Outline 

•  Logistic Regression: a Brief Review  

•  Classification Boundaries 

•  Regularization in Logistic Regression  

•  Multinomial Logistic Regression 

•  Bayes Theorem and Misclassification Rates  

•  ROC Curves  
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Multiple Logistic Regression: the model 

Last time we saw the general form of the multiple logistic regression 
model.  Specifically we can define a multiple logistic regression 
model to predict P(Y = 1) as such:  
 
 
 
where there are p predictors: X = (X1, X2, ..., Xp). 
 
Note: statisticians are often lazy and use the notation “log” to mean 
“ln” (the text does this). We will write log10 if this is what we mean.  

log

✓
P (Y = 1)

1� P (Y = 1)

◆
= �0 + �1X1 + �2X2 + ...+ �pXp
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Multiple Logistic Regression: Estimation 

The model parameters are estimated using likelihood theory.  That 
is the model assumes 𝑌↓𝑖 ~𝐵𝑒𝑟𝑛(𝑝= 1/1+ 𝑒↑−( 𝛽↓0 + 𝛽↓1 𝑋↓1 +…+
𝛽↓𝑝 𝑋↓𝑝 )  ).  Then the log-likelihood function is maximized to get 
the 𝛽 ’s: 
 
 
 
 
 

ln�[𝐿( 𝛽 |𝑌)] =	 ln�[∏𝑖↑▒(1/1+ 𝑒↑−( 𝛽↓0 + 𝛽↓1 𝑋↓1 +…+𝛽↓𝑝 𝑋↓𝑝 )  )↑𝑦↓𝑖   (1− 1/1+ 𝑒↑−( 𝛽↓0 + 𝛽↓1 𝑋↓1 +…+𝛽↓𝑝 𝑋↓𝑝 )  )↑1−𝑦↓𝑖  ] 
= ln�[∏𝑖↑▒(1+ 𝑒↑−( 𝛽↓0 + 𝛽↓1 𝑋↓1 +…+𝛽↓𝑝 𝑋↓𝑝 ) )↑−𝑦↓𝑖   (1+ 𝑒↑( 𝛽↓0 + 𝛽↓1 𝑋↓1 +…+𝛽↓𝑝 𝑋↓𝑝 ) )↑𝑦↓𝑖 −1 ] 
=−∑𝑖↑▒[𝑦↓𝑖 ln�(1+ 𝑒↑−( 𝛽↓0 + 𝛽↓1 𝑋↓1 +…+𝛽↓𝑝 𝑋↓𝑝 ) ) +(1− 𝑦↓𝑖 )ln�(1+ 𝑒↑( 𝛽↓0 + 𝛽↓1 𝑋↓1 +…+𝛽↓𝑝 𝑋↓𝑝 ) ) ] 	
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Classification Boundaries 
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Classification boundaries 

Recall that we could attempt to purely classify each observation based on 
whether the estimated 𝑃(𝑌=1) from the model was greater than 0.5. 

When dealing with ‘well-separated’ data, logistic regression can work well 
in performing classification. 

We saw a 2-D plot last time which had two predictors, 𝑋↓1 , 𝑋↓2  and 
depicted the classes as different colors. A similar one is shown on the next 
slide. 
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2D Classification in Logistic Regression: an Example 
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2D Classification in Logistic Regression: an Example 

Would a logistic regression model perform well in classifying the 
observations in this example?  

What would be a good logistic regression model to classify these points?  

Based on these predictors, two separate logistic regression model were 
considered that were based on different ordered polynomials of 𝑋↓1 , 𝑋↓2  
and their interactions.  The ‘circles’ represent the boundary for 
classification. 

How can the classification boundary be calculated for a logistic regression? 
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2D Classification in Logistic Regression: an Example 

In this plot, which classification boundary performs better?  How can you 
tell?  How would you make this determination in an actual data example?  

We could determine the misclassification rates in left out validation or test 
set(s). 
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Regularization in Logistic Regression 
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Review: Regularization in Linear Regression 

Based on the Likelihood framework, a loss function can be 
determined based on the likelihood function.  
 
We saw in linear regression that maximizing the log-likelihood is 
equivalent to minimizing the sum of squares error:  
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Review: Regularization in Linear Regression 

And a regularization approach was to add a penalty factor to this 
equation. Which for Ridge Regression becomes: 
 
 
 
 
Note: this penalty shrinks the estimates towards zero, and had 
the analogue of using a Normal prior centered at zero in the 
Bayesian paradigm.  
 



CS109A, PROTOPAPAS, RADER 

Loss function in Logistic Regression 

A similar approach can be used in logistic regression. Here, 
maximizing the log-likelihood is equivalent to minimizing the 
following loss function: 
 
 
where  𝑝↓𝑖 = 1/1− 𝑒↑−( 𝛽↓0 + 𝛽↓1 𝑋↓1,𝑖 +…+𝛽↓𝑝 𝑥↓𝑝,𝑖 )   
Why is this a good loss function to minimize? Where does this 
come from?  
The log-likelihood for independent  𝑌↓𝑖 ~Bern( 𝑝↓𝑖 ). 
 
 

 	

argmin┬𝛽↓0 , 𝛽↓1 ,…, 𝛽↓𝑝   [−∑𝑖=1↑𝑛▒(𝑦↓𝑖 ln�(𝑝↓𝑖 ) +(1− 𝑦↓𝑖 )ln�(1− 𝑝↓𝑖 ) ) ] 	



CS109A, PROTOPAPAS, RADER 

Regularization in Logistic Regression 

A penalty factor can then be added to this loss function and results in 
a new loss function that penalizes large values of the parameters:  
 
 
 
The result is just like in linear regression: shrink the parameter 
estimates towards zero.  
In practice, the intercept is usually not part of the penalty factor. 
Note: the sklearn package uses a different tuning parameter: instead 
of 𝜆 they use a constant that is essentially 𝐶= 1/𝜆 .  
 
 

argmin┬𝛽↓0 , 𝛽↓1 ,…, 𝛽↓𝑝   [−∑𝑖=1↑𝑛▒(𝑦↓𝑖 ln�(𝑝↓𝑖 ) +(1− 𝑦↓𝑖 )ln�(1− 𝑝↓𝑖 ) ) +𝜆∑𝑗=1↑𝑝▒𝛽↓𝑗↑2  ] 	
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Regularization in Logistic Regression: an Example  

Let’s see how this plays out in an example in logistic regression.  



CS109A, PROTOPAPAS, RADER 

Regularization in Logistic Regression: an Example  

Let’s see how this plays out in an example in logistic regression.  
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Regularization in Logistic Regression: tuning 𝜆 

Just like in linear regression, the shrinkage factor must be 
chosen. How should we go about doing this?  
 

Through building multiple training and test sets (through k-fold 
or random subsets), we can select the best shrinkage factor to 
mimic out-of-sample prediction.  
 
How could we measure how well each model fits the test set?  
 

We could measure this based on some loss function!  
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Multinomial Logistic Regression  
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Logistic Regression for predicting more than 2 Classes  

There are several extensions to standard logistic regression when 
the response variable Y has more than 2 categories. The two most 
common are:  

1.  ordinal logistic regression 
2.  multinomial logistic regression.  

Ordinal logistic regression is used when the categories have a 
specific hierarchy (like class year: Freshman, Sophomore, Junior, 
Senior; or a 7-point rating scale from strongly disagree to strongly 
agree).  
 
Multinomial logistic regression is used when the categories have no 
inherent order (like eye color: blue, green, brown, hazel, et...).  
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Multinomial Logistic Regression  

There are two common approaches to estimating a nominal 
(not-ordinal) categorical variable that has more than 2 classes. 
The first approach sets one of the categories in the response 
variable as the reference group, and then fits separate logistic 
regression models to predict the other cases based off of the 
reference group. For example we could attempt to predict a 
student’s concentration:  
 
 
 
from predictors x1 number of psets per week and x2 how much 
time spent in Lamont Library.  
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Multinomial Logistic Regression (cont.)  

We could select the y = 3 case as the reference group (other 
concentration), and then fit two separate models: a model to 
predict y = 1 (CS) from y = 3 (others) and a separate model to 
predict y = 2 (Stat) from y = 3 (others).  
 

Ignoring interactions, how many parameters would need to be 
estimated?  
 

How could these models be used to estimate the probability of 
an individual falling in each concentration?  
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One vs. Rest (ovr) Logistic Regression  

The default multiclass logistic regression model is called the ’One vs. 
Rest’ approach, which is our second method.  
If there are 3 classes, then 3 separate logistic regressions are fit, where 
the probability of each category is predicted over the rest of the categories 
combined. So for the concentration example, 3 models would be fit:  
•  a first model would be fit to predict CS from (Stat and Others) 

combined.  
•  a second model would be fit to predict Stat from (CS and Others) 

combined. 
•  a third model would be fit to predict Others from (CS and Stat) 

combined.  
An example to predict play call from the NFL data follows...  
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OVR Logistic Regression in Python  
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Classification for more than 2 Categories  

When there are more than 2 categories in the response 
variable, then there is no guarantee that P(Y = k) ≥ 0.5 for any 
one category. So any classifier based on logistic regression will 
instead have to select the group with the largest estimated 
probability.  
 
The classification boundaries are then much more difficult to 
determine. We will not get into the algorithm for drawing these in 
this class.  
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Classification for more than 2 Categories  

When there are more than 2 categories in the response 
variable, then there is no guarantee that P(Y = k) ≥ 0.5 for any 
one category. So any classifier based on logistic regression will 
instead have to select the group with the largest estimated 
probability.  
 
The classification boundaries are then much more difficult to 
determine. We will not get into the algorithm for drawing these in 
this class.  
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Softmax 

So how do we convert a set of probability estimates from separate 
models to one set of probability estimates? 
The softmax function is used.  That is, the weights are just normalized 
for each predicted probability.  AKA, predict the 3 class probabilities 
from each model of the 3 models, and just rescale so they add up to 1. 
Mathematically that is: 
 
 
 
where 𝑥  is the vector of covariates for that observation and 𝛽  ↓𝑘  are 
the associated logistic regression coefficient estimates. 

26	

𝑃𝑦=𝑘� 𝑥  = 𝑒↑𝑥 ↑𝑇 𝛽  ↓𝑘  /∑𝑗=1↑𝐾▒𝑒↑𝑥 ↑𝑇 𝛽  ↓𝑗    	
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Classification for more than 2 Categories in sklearn 
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Bayes Theorem and Misclassification Rates  
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Bayes’ Theorem  

We defined conditional probability as:  
     𝑃𝐵�𝐴 =𝑃(𝐵 𝑎𝑛𝑑 𝐴)/𝑃(𝐴) 

And using the fact that 𝑃(𝐵 𝑎𝑛𝑑 𝐴)= 𝑃𝐴�𝐵 𝑃(𝐵) we get the simplest 
form of Bayes’ Theorem:  
𝑃𝐵�𝐴 = 𝑃𝐴�𝐵 𝑃(𝐵)/𝑃(𝐴)  
Another version of Bayes’ Theorem is found by substituting in the 
Law of Total Probability (LOTP) into the denominator:  
𝑃𝐵�𝐴 = 𝑃𝐴�𝐵 𝑃(𝐵)/𝑃𝐴�𝐵 𝑃(𝐵)+𝑃𝐴� 𝐵↑𝐶  𝑃( 𝐵↑𝐶 )  
Where have we seen Bayes’ Theorem before? Why do we care?  



CS109A, PROTOPAPAS, RADER 

Diagnostic Testing  

In the diagnostic testing paradigm, one cares about whether the 
results of a test (like a classification test) matches truth (the true 
class that observation belongs to). The simplest version of this 
is trying to detect disease (D+ vs. D−) based on a diagnostic 
test (T+ vs. T−).  
 

Medical examples of this include various screening tests: breast 
cancer screening through (i) self-examination and (ii) 
mammography, prostate cancer screening through (iii) PSA 
tests, and Colo-rectal cancer through (iv) colonoscopies.  
 

These tests are a little controversial because of poor predictive 
probability of the tests.  
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Diagnostic Testing (cont.)  

Bayes’ theorem can be rewritten for diagnostic tests: 
𝑃𝐷+�𝑇+ = 𝑃𝑇+�𝐷+ 𝑃(𝐷+)/𝑃𝑇+�𝐷+ 𝑃(𝐷+)+𝑃𝑇+�𝐷− 𝑃(𝐷−)  
These probability quantities can then be defined as:  
•  Sensitivity: 𝑃𝑇+�𝐷+  
•  Specificity: 𝑃𝑇−�𝐷−   
•  Prevalence: 𝑃(𝐷+)  
•  Positive Predictive Value: 𝑃(𝐷+|𝑇+)  
•  Negative Predictive Value: 𝑃(𝐷−|𝑇−)  
How do positive and negative predictive values relate? Be careful...  
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Diagnostic Testing  

We mentioned that these tests are a little controversial because 
of their poor predictive probability. When will these tests have 
poor positive predictive probability?  
 

When the disease is not very prevalent, then the number of 
’false positives’ will overwhelm the number of true positive. For 
example, PSA screening for prostate cancer has sensitivity of 
about 90% and specificity of about 97% for some age groups 
(men in their fifties), but prevalence is about 0.1%.  
 

What is positive predictive probability for this diagnostic test?  
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Why do we care? 

As data scientists, why do we care about diagnostic testing from 
the medical world? (hint: it’s not just because Kevin is a trained 
biostatistician!)  
Because classification can be thought of as a diagnostic test. 
Let Yi = k be the event that observation i truly belongs to 
category k, and let 𝑌 ↓𝑖 =𝑘 the event that we correctly predict it 
to be in class k. Then Bayes’ rule states that our Positive 
Predictive Value for classification is: 
  
 
Thus the probability of a predicted outcome truly being in a 
specific group depends on what? The proportion of observations 
in that class!  
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Error in Classification 

There are 2 major types of error in classification problems based 
on a binary outcome. They are:  
 
  False positives: incorrectly predicting 𝑌 =1 when it truly is in 
𝑌=0.  
  False negative: incorrectly predicting 𝑌 =0 when it truly is in 
𝑌=1.  
 
The results of a classification algorithm are often summarized in 
two ways: a confusion table, sometimes called a contingency 
table, or a 2x2 table (more generally (k x k) table) and a receiver 
operating characteristics (ROC) curve.  
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Confusion table  

When a classification algorithm (like logistic regression) is used, the 
results can be summarize in a (k x k) table as such:  
 
 
 
 
 
The table above was a classification based on a logistic regression 
model to predict political party (Dem. vs. Rep.) based on 3 predictors: 
X1 = whether respondent believes abortion is legal, X2 = income 
(logged) and X3 = years of education.  
What are the false positive and false negative rates for this classifier?  

	Predicted	not	Republican	
( 𝑌 =0)	

Predicted	Republican	
( 𝑌 =1)	

Truly	not	Republican	
(𝑌=0)	 288	 487	

Truly	Republican	
(𝑌=0)	 311	 221	
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Bayes’ Classifier Choice  

A classifier’s error rates can be tuned to modify this table. How?  
The choice of the Bayes’ classifier level will modify the characteristics 
of this table.  
If we thought is was more important to predict republicans correctly 
(lower false positive rate), what could we do for our Bayes’ classifier 
level?  
We could classify instead based on:  
 

𝑃 (𝑌=1)<𝜋 
 

and we could choose 𝜋 to be some level other than 0.5. Let’s see 
what the table looks like if 𝜋 were 0.48 or 0.72 instead (why such 
strange numbers?).  
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Other Confusion tables  

Based on 𝜋 = 0.48:  
 
 
 
What has improved? What has worsened?  
 
Based on 𝜋 = 0.72:  
 
 
Which should we choose? Why?  
 

	Predicted	not	Republican	
( 𝑌 =0)	

Predicted	Republican	
( 𝑌 =1)	

Truly	not	Republican	
(𝑌=0)	 143	 632	

Truly	Republican	
(𝑌=0)	 138	 394	

	Predicted	not	Republican	
( 𝑌 =0)	

Predicted	Republican	
( 𝑌 =1)	

Truly	not	Republican	
(𝑌=0)	 539	 236	

Truly	Republican	
(𝑌=0)	 455	 77	
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ROC Curves 
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ROC Curves  

The Radio Operator Characteristics (ROC) curve illustrates the 
trade-off for all possible thresholds chosen for the two types of 
error (or correct classification).  
 
The vertical axis displays the true positive predictive value and 
the horizontal axis depicts the true negative predictive value.  
 
What is the shape of an ideal ROC curve?  
 
See next slide for an example.  
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ROC Curve Example  
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ROC Curve for measuring classifier preformance  

The overall performance of a classifier, calculated over all 
possible thresholds, is given by the area under the ROC curve 
(’AUC’).  
 

An ideal ROC curve will hug the top left corner, so the larger the 
AUC the better the classifier.  
 

What is the worst case scenario for AUC? What is the best 
case? What is AUC if we independently just flip a coin to 
perform classification?  
 

This AUC then can be use to compare various approaches to 
classification: Logistic regression, LDA (to come), k-NN, etc...  


