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What do you get when you cross an elephant and a rhino?

Q: What does logistic regression think of 
LDA/QDA?
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A: You’re modelling too much

• LDA/QDA tell the complete story of how the data came to be

• Correspondingly, it makes heavy assumptions, and much 
can go wrong

• Logistic doesn’t care how the X data came to be, it only tells 
the story of the Y data 

• Since there are fewer assumptions, the math is more 
advanced and the method is slower

4
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Anyone take the old SATs?

SVM:Logistic Regression::Logistic 
Regression:QDA

5
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Less is More

SVMs

• Only predict the final class, not the 
probability of each class

• Make no assumptions about the 
data

• Still work well with large numbers 
of features

6
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Our Path

• I: Get comfy with the key expressions and concepts
Bundles, signed distance, class-based distance 

• II: Extract the highlights of SVMs from the loss function 
Only certain observations matter; effects of the C parameter

• III: Derivation of the primal and dual problems, fulfilling 
the promises from Part II

Lagrangian, Piramal/Dual games, KKT conditions as souped-up 
“derivative=0”

• IV: Interpret the dual problem and see SVMs in a new way
SVMs can be seen as an advanced neighbors-style algorithm

7



REVIEW
Part	I
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Act I: Setting

• Like Logistic regression, SVMs set three parameters: 
a weight on each feature (w1 and w2) and an intercept (b)
• This is MORE than we need to define a line

• So what are we really defining?

9
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• Via 𝑤"𝑥 + 𝑏, 𝑤 and 𝑏 define an output at each point of input 
space

Key Concept #1

• This is our first key quantity, and will 
live in our ‘reminder corner’

• 𝑤"𝑥 + 𝑏 gives	us:
• The rule to classify test points: if 𝑤"𝑥 +

𝑏	is + classify as +; if - classify as -

• A new measure of distance [from the 
decision boundary in units of 1 𝑤⁄ ]

• We [arbitrarily] define +1 and -1 as the 
margin for a given 𝑤, 𝑏 (bundle)

10

𝑤"𝑥 + 𝑏 =

𝑤"𝑥 + 𝑏 :	Signed	distance



CS109A, PROTOPAPAS, RADER

Live Demo

DEMO: 

In the notebook, we manipulate w1, w2, and b to see how they 
affect the bundle produced

Conclusions:

• 𝑤1 and 𝑤2 control the slope of the bundle, and the larger 
the norm, the more tightly packed the bundle is

• 𝑏 controls the height of the bundle, but its effect depends 
on the magnitude of 𝑤1 and 𝑤2

11

𝑤"𝑥 + 𝑏 :	Signed	distance
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Key Concept #2

• The expression 𝑦9(𝑤"𝑥9 + 𝑏) occurs a ton with SVMs
• It takes the signed distance function and multiplies it by an 

observation’s class

• We’re calling it “class-based distance” 

12

𝑦9(𝑤"𝑥9 + 𝑏) =

𝑦9(𝑤"𝑥9 + 𝑏) = 2

−2

1

−13

Example: 
𝑦9(𝑤"𝑥9 + 𝑏)
– is 0 on at the decision boundary

– is above 1 if you are safely beyond your margin

– is 1 (or less) if you are crowding the margin or 
misclassified

– is negative if you’re really messing up

𝑤"𝑥 + 𝑏 :	Signed	distance
𝑦9(𝑤"𝑥9 + 𝑏):	Class-based	distance
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A table of the key quantities at each point

13

𝐶

𝐷

𝐵

𝐸𝐴

Point Class Signed	
Distance

Class-based	
distance

Loss

A - -3 3 None

B - -1 1 Marginal

C + 2 2 None

D - 2 -2 Misclass

E + -1 -1 Misclass

𝑤"𝑥 + 𝑏 :	Signed	distance
𝑦9(𝑤"𝑥9 + 𝑏):	Class-based	distance
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Kernels

The same ‘signed distance’ concepts 
apply to kernels, although:

1. The lines get wavy

2. The way we measure distance is 
less clear

Later on, we’ll learn 

• What kind distance is used for 
kernels

• Standard distance isn’t what you 
think

14

𝑤"𝑥 + 𝑏 :	Signed	distance
𝑦9(𝑤"𝑥9 + 𝑏):	Class-based	distance
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Recap

Recap: 

• We’re picking a best bundle (set of weights and b)

• The bundle implies a signed ‘distance’ 𝑤"𝑥 + 𝑏 over the 
space, where 0 is the decision boundary

• Class-based distance 𝑦9𝑤"𝑥9 + 𝑏 is directly related to how 
sad we are about a training point

• Kernels put a wavy set of lines over the input space, 
instead of level ones

15

𝑤"𝑥 + 𝑏 :	Signed	distance
𝑦9(𝑤"𝑥9 + 𝑏):	Class-based	distance



LOSS FUNCTIONS
Part	II
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Hinge Loss

We saw 1 was a critical value for 𝑦9(𝑤"𝑥9 +
𝑏)

• Above 1 means you’re safely within your margin

• Below 1 means you’re crowding the margin

• Below 0 means you’re misclassified

Make it a loss function:
• Negate so bigger values are worse, not 

better,

• + 1 so points within their margin get loss 
0 instead of -1

• If the loss would be negative, record 0 
instead

17

𝑤"𝑥 + 𝑏 :	Signed	distance
𝑦9(𝑤"𝑥9 + 𝑏):	Class-based	distance

𝐿𝑜𝑠𝑠 = max	(1 − 𝑦9(𝑤"𝑥9 + 𝑏), 0)

1 − 𝑦9(𝑤"𝑥9 + 𝑏):	Loss
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Loss

• Which do you like best?

18

𝑤"𝑥 + 𝑏 :	Signed	distance
1 − 𝑦9(𝑤"𝑥9 + 𝑏):	Loss
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Act II: Loss

19

• Which do you like best?

𝑤"𝑥 + 𝑏 :	Signed	distance
1 − 𝑦9(𝑤"𝑥9 + 𝑏):	Loss
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The Loss Function

• Tradeoff exists between wanting wider margins and discomfort with 
points inside the margins

𝐿𝑜𝑠𝑠(𝑤, 𝑏, 𝑡𝑟𝑎𝑖𝑛	𝑑𝑎𝑡𝑎) = P max	(1 − 𝑦9 𝑤"𝑥9 + 𝑏 , 0)
�

RST9U

+ 𝜆 𝑤 W

• View A: minimize hinge loss, 𝐿W regularization

𝐿𝑜𝑠𝑠 𝑤, 𝑏, 𝑡𝑟𝑎𝑖𝑛	𝑑𝑎𝑡𝑎 = 𝑤 W + 𝐶 P max	(1 − 𝑦9 𝑤"𝑥9 + 𝑏 , 0)
�

RST9U
• View B: maximize the margin, but pay a price for points inside the 

margin (or misclassified)

20

𝑤 W + 𝐶 ∑ max	(1 − 𝑦9 𝑤"𝑥9 + 𝑏 , 0)�
RST9U :	Loss	(margin+invasion)

𝑤"𝑥 + 𝑏 :	Signed	distance
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Live Demo

DEMO: 

In the notebook, we manipulate 𝐶 and see how the solution 
found by SVM changes

Conclusions:

• Big 𝐶: we do anything to reduce invasion losses
• If seperable: finds separating plane

• If not: lumps non-separable points into margin, separates the 
rest

• Small 𝐶: we stop caring about invasion (or even 
misclassification); just grow the margin

21

𝑤 W + 𝐶 ∑ max	(1 − 𝑦9 𝑤"𝑥9 + 𝑏 , 0)�
RST9U :	Loss	(margin+invasion)

𝑤"𝑥 + 𝑏 :	Signed	distance
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Observations

Observations from SVM loss:

1. Hinge loss zero for most points
– most points are behind the margin

2. Moving/deleting these points 
wouldn’t change the solution

3. The outcome for a test point only 
depends on a handful of training 
points
• Should be able to write output value 

as combination of (-2,1) and (1,2)

• Key question: HOW can we determine 
a test point’s class using the few 
important training points?

• Leads to re-casting as a fancified 
neighbors algorithm

22

𝑤 W + 𝐶 ∑ max	(1 − 𝑦9 𝑤"𝑥9 + 𝑏 , 0)�
RST9U :	Loss	(margin+invasion)

𝑤"𝑥 + 𝑏 :	Signed	distance
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What to watch for

Our reward for sitting through the math:

1. A recipe for the most important training points

2. A way to make decisions while throwing out most of the 
training data

3. A new and more powerful view of what SVMs do

Like studying linear regression’s loss minimization via 
calculus, but with a harder target and more advanced math

23

𝑤 W + 𝐶 ∑ max	(1 − 𝑦9 𝑤"𝑥9 + 𝑏 , 0)�
RST9U :	Loss	(margin+invasion)

𝑤"𝑥 + 𝑏 :	Signed	distance



MATH
Part	III
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Ideas: http://cs229.stanford.edu/notes/cs229-notes3.pdf
Soft-Margin	derivation:	http://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/lecture_notes/svm/svm.pdf
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Author’s Proof

Outline proof steps

1. Re-cast the loss function as a convex optimization 

2. Re-write the one-player game into a two-player game 
(Primal)

3. Rewrite the two-player game into an equivalent game with 
opposite turn order (Dual)

4. Observe that assigning (mostly-zero) importance scores to 
each training point is equivalent to solving the original 
optimization (KKT)

5. Observe that our original SVM formulation was using a 
very counter-intuitive definition of distance, and we can do 
better 25

𝑤 W + 𝐶 ∑ max	(1 − 𝑦9 𝑤"𝑥9 + 𝑏 , 0)�
RST9U :	Loss	(margin+invasion)

𝑤"𝑥 + 𝑏 :	Signed	distance
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Optimization

Our goal: 

min
Y,Z

𝑤 W + 𝐶 P max	(1 − 𝑦9 𝑤"𝑥9 + 𝑏 , 0)
�

RST9U
First, re-write to an optimization problem with constraints:

min
Y,Z,[\

	
1
2
𝑤 W + 𝐶P𝜉9

U

9^_
Such that

𝜉9 ≥ 1 − 𝑦9 𝑤"𝑥9 + 𝑏 , 𝜉9 ≥ 0	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖
Basically, we delete loss and introduce some 𝜉9 variables that you get to set

Why is this the same problem?

• 𝜉9 must be at least as big as the loss: you’d be dumb to set them to anything bigger 
than the loss

• Now you’re back to minimizing norm+loss

26

Objective:	_
W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_

𝑤"𝑥 + 𝑏 :	Signed	distance
Constraints:		𝜉9 ≥ 1 − 𝑦9 𝑤"𝑥9 + 𝑏 ,			𝜉9 ≥ 0𝑤 W + 𝐶 ∑ max	(1 − 𝑦9 𝑤"𝑥9 + 𝑏 , 0)�

RST9U :	Loss	(margin+invasion)
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• You’re trying to plan your week
• You have to choose how much time you allocate to study, work, 

etc.

• There are hard constraints

• What if the constraints were flexible?
• You’d know what the cost of being each late day is

• And how about a reward for getting work done early!

Yeah, ‘hypothetically’…

• Max 20 hours of 
work-study

• CS109 maximum 1 day 
late

• CS207 due by Thursday

• Minimum 4 hours of 
sleep

(Per week)

• No asec OH on Wednesday

• Job interview Thursday
• Project meeting by Monday

• Meal budget: $20
• Call your mom

• Brush your teeth

• TODO

• TODO

27

Objective:	_
W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_

𝑤"𝑥 + 𝑏 :	Signed	distance
Constraints:		𝜉9 ≥ 1 − 𝑦9 𝑤"𝑥9 + 𝑏 ,			𝜉9 ≥ 0
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Lagrange Multipliers

• This brings us to the Lagrangian
• It takes all the mandatory requirements and attaches costs to 

them

• For 𝜉9 ≥ 1 − 𝑦9 𝑤"𝑥9 + 𝑏 we attach a cost 𝛼9 for each unit 
that 1 − 𝑦9 𝑤"𝑥9 + 𝑏 exceeds 𝜉9
• Likewise for 𝜉9 ≥ 0

• Overall, we get

1
2
𝑤 W + 𝐶P𝜉9

U

9^_

+P𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]
U

9^_

+P−𝛽9𝜉9

U

9^_

28

Original	objective Cost	(or	benefit)	from	𝜉9 ≥ 1 −
𝑦9 𝑤"𝑥9 + 𝑏 “objective”

Cost	(or	benefit)	from	𝜉9 ≥ 0
“objective”

Objective:	_
W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_

𝑤"𝑥 + 𝑏 :	Signed	distance
Constraints:		𝜉9 ≥ 1 − 𝑦9 𝑤"𝑥9 + 𝑏 ,			𝜉9 ≥ 0Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_
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Doom

• But there aren’t actually 
penalties for each day late, or 
rewards for being early…

• What you need

• The demon takes any plan you 
make and manipulates the 𝛼9
and 𝛽9 costs
• So you better present a plan 

that actually meets the 
constraints

29

You	shall	not	pass

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_, Khazad

is	a	demon
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Primal scream

• We have a two-player game (you and demon) equivalent to 
the original hard-constraint problem:

min
Y,Z,[\

max
g\hi

1
2
𝑤 W + 𝐶P𝜉9

U

9^_

+P𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 − 𝜉9]
U

9^_

+P−𝛽9𝜉9

U

9^_

• The demon will try to screw you, so you’ll only propose 
points that meet all constraints
• And you’ll try to minimize the original objective

• Level one complete: we wrote the “Primal Problem”
• Now, like Gandalf and the Balrog, there’s a Duel

30

You	choose	the	parameters

Then	the	demon	chooses	the	costs

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_
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• Still pondering how to set your schedule, 
an Econ 101 student walks by

• “The free market solves everything”
• “What about companies polluting?”
• “Well, charge them for each ton of carbon they emit

• If you get prices right, they’ll stop”

• Could you set the costs/rewards yourself and let the free 
market minimize the objective?
• Can you set costs that guide them to the same solution as the 

original?
31

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_
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The Dual

Reversing the turn order (the min and max), we get

max
ghi

min
j,k,[\

1
2
𝑤 W + 𝐶P𝜉9

U

9^_

+P𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 − 𝜉9]
U

9^_

 +P−𝛽9𝜉9

U

9^_

• No guarantee there are prices that force the free market to obey 
constraints and give the same solution as the original

• However, because …
• 1) the objective is convex and 2) the constraints are convex and 3) there is 

some solution that fits the constraints (pick 𝜉 large)]: 

• …there are such prices, even if they’re hard to write down
32

You	set	the	costs/rewards

The	market	tries	to	minimize	the	objective,	including	any	costs/subsidies	you	offer

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_
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KKT Conditions

IF the dual can be rigged to give the same solution as the 
original

THEN we get helpful facts about the solution called the KKT 
conditions

• KKT can be used to check a candidate solution, or derive 
facts of the eventual solution

1. Derivative of Lagrangian (wrt any parameter) is 0

2. Derivative of Lagrangian (wrt cost of violating an equality) is 0

3. Constraint function ≤ 0 (i.e. constraints are satisfied)

4. Cost*constraint = 0 (only binding constraints get non-zero 
costs)

5. Cost ≥ 0 (costs are positive)
33

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_
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That was… mostly Econ

Let’s recap

• Wrote our optimization problem (minimize loss)

• Massaged into a convex optimization problem 
• Horary for hinge loss and convexity

• Applied Lagrangian to make progress on the constrained 
optimization 
• Costs instead of mandates, but a demon controls costs

• Convexity let us study the dual problem instead
• We control costs, but it’s not always possible to set them well

• KKT gave us a bunch of useful properties we’re about to 
apply

34

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_
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That was… mostly Econ

Let’s recap

• Wrote our optimization problem (minimize loss)

• Massaged into a convex optimization problem 
• Horary for hinge loss and convexity

• Applied Lagrangian to make progress on the constrained 
optimization 
• Costs instead of mandates, but a demon controls costs

• Convexity let us study the dual problem instead
• We control costs, but it’s not always possible to set them well

• KKT gave us a bunch of useful properties we’re about to 
apply

35

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_



THE LAST MATH
Part	III:	Part	II
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The first rule of KKT is

Rule 1 (for w) says that  

∇j 	
1
2
𝑤 W + 𝐶P𝜉9

U

9^_

+P𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 ] − 𝜉9

U

9^_

+P−𝛽9𝜉9

U

9^_

= 0

The derivative is practically trivial: 

𝑤 +P𝛼9[−𝑦9𝑥9]
U

9^_

= 0

𝑤 =P𝛼9[𝑦9𝑥9]
U

9^_

Conclusions

• The w are just a weighted sum of the training points

• If we know 𝛼9 , we can make classification decisions using only the x 
and y data

37

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_

1)	𝑤 = ∑ 𝛼9[𝑦9𝑥9]U
9^_
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The second rule of KKT is

Rule 1 (for b) says that  

∇k 	
1
2
𝑤 W + 𝐶P𝜉9

U

9^_

+P𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 − 𝜉9]
U

9^_

+P−𝛽9𝜉9

U

9^_

= 0

The derivative is again trivial: 

P𝛼9[−𝑦9]
U

9^_

= 0

P𝛼9𝑦9

U

9^_

= 0

Conclusions

• The 𝛼9 assigned to the positive class cancel with the 𝛼9 assigned to 
the negative class

• Not very insightful, but allows a simplification later

38

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_

1)	𝑤 = ∑ 𝛼9[𝑦9𝑥9]U
9^_

2)	∑ 𝛼9𝑦9U
9^_ = 0
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The third rule of KKT is

Rule 1 (for 𝜉n) says that  

∇[\ 	
1
2
𝑤 W + 𝐶P𝜉9

U

9^_

+P𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 − 𝜉9]
U

9^_

+P−𝛽9𝜉9

U

9^_

= 0

The derivative is again trivial: 
𝐶 − 𝛼n − 𝛽n = 0

	𝐶 = 𝛼n + 𝛽n,	 for all j

Conclusions

• The cost of setting 𝜉9 above the loss and the cost of setting 𝜉9 below 0 
add up to the total cost associated with 𝜉9

• Again, not terribly informative, but useful on the next slide
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𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_

1)	𝑤 = ∑ 𝛼9[𝑦9𝑥9]U
9^_

2)	∑ 𝛼9𝑦9U
9^_ = 0

3)	𝐶 = 𝛼n + 𝛽n
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That’s all the facts we need. Let’s simplify the dual.

40

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_

1)	𝑤 = ∑ 𝛼9[𝑦9𝑥9]U
9^_

2)	∑ 𝛼9𝑦9U
9^_ = 0

3)	𝐶 = 𝛼n + 𝛽n
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The Hardest Part… Is Cleaning Up

Starting	from	the	Lagrangian
1
2
𝑤"𝑤 + 𝐶P𝜉9

U

9^_

+P𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 − 𝜉9]
U

9^_

+P−𝛽9𝜉9

U

9^_
Fact 3 (𝐶 − 𝛼n − 𝛽n = 0 for all j) to kill C
Rearrange

1
2
𝑤"𝑤 +P𝐶𝜉9

U

9^_

+P−𝛽9𝜉9

U

9^_

+P−𝛼9𝜉9

U

9^_

P𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 ]
U

9^_

Apply	the	fact
1
2
𝑤"𝑤 +P𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 ]

U

9^_
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http://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/lecture_notes/svm/svm.pdf

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_

1)	𝑤 = ∑ 𝛼9[𝑦9𝑥9]U
9^_

2)	∑ 𝛼9𝑦9U
9^_ = 0

3)	𝐶 = 𝛼n + 𝛽n
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The Hardest Part… Is Cleaning Up

Copy	over	from	slide	above
1
2
𝑤"𝑤 +P𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 ]

U

9^_
Fact 2 (∑ 𝛼9𝑦9U

9^_ = 0) to kill	𝑏
Rearrange

1
2
𝑤"𝑤 +P𝛼9[1 − 𝑦9 𝑤"𝑥9 ]

U

9^_

+P𝛼9𝑦9𝑏
U

9^_
Apply	the	fact

1
2
𝑤"𝑤 +P𝛼9[1 − 𝑦9 𝑤"𝑥9 ]

U

9^_
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http://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/lecture_notes/svm/svm.pdf

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_

1)	𝑤 = ∑ 𝛼9[𝑦9𝑥9]U
9^_

2)	∑ 𝛼9𝑦9U
9^_ = 0
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The Hardest Part… Is Cleaning Up

Copy	over	from	slide	above
1
2
𝑤"𝑤 +P𝛼9[1 − 𝑦9 𝑤"𝑥9 ]

U

9^_
Fact 1 (𝑤 = ∑ 𝛼n[𝑦n𝑥n]U

n^_ ) to kill w
Rearrange

1
2
𝑤"𝑤 −P𝛼9𝑦9 𝑤"𝑥9

U

9^_

+P𝛼9

U

9^_
Apply	the	fact

1
2
P𝛼9[𝑦9𝑥9"]
U

9^_

P𝛼n[𝑦n𝑥n]
U

n^_

−P𝛼9𝑦9 P𝛼n[𝑦n𝑥n"]
U

n^_

𝑥9

U

9^_

+P𝛼9

U

9^_
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http://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/lecture_notes/svm/svm.pdf

𝑤"𝑥 + 𝑏 :	Signed	distance
Lagrangian:	_

W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_

1)	𝑤 = ∑ 𝛼9[𝑦9𝑥9]U
9^_

∑ 𝛼n𝑦n𝑥n"𝑥U
n^_ + b:	Signed	distance
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The Hardest Part… Is Cleaning Up

Copy

1
2
P𝛼9[𝑦9𝑥9"]
U

9^_

P𝛼n[𝑦n𝑥n]
U

n^_

−P𝛼9𝑦9 P𝛼n[𝑦n𝑥n"]
U

n^_

𝑥9

U

9^_

+P𝛼9

U

9^_

Simplify

1
2
PP𝛼n𝛼9𝑦n𝑦9𝑥9"𝑥n

U

n^_

U

9^_

−PP𝛼n𝛼9𝑦n𝑦9𝑥9"𝑥n

U

n^_

U

9^_

+P𝛼9

U

9^_

Final form:

max
g

P𝛼9

U

9^_

	−
1
2
PP𝛼n𝛼9𝑦n𝑦9𝑥9"𝑥n

U

n^_

U

9^_

Such that 0 ≤ 𝛼9 ≤ 𝐶 for all 𝑖 and ∑ 𝛼9𝑦9U
9^_ = 0

44

Lagrangian:	_
W
𝑤 W + 𝐶 ∑ 𝜉9U

9^_ + ∑ 𝛼9[1 − 𝑦9 𝑤"𝑥9 + 𝑏 	− 𝜉9]U
9^_ +∑ −𝛽9𝜉9U

9^_Simplified	Dual:	max
g

∑ 𝛼9U
9^_ 	− _

W
∑ ∑ 𝛼n𝛼9𝑦n𝑦9𝑥9"𝑥nU

n^_
U
9^_

∑ 𝛼n𝑦n𝑥n"𝑥U
n^_ + b:	Signed	distance



WHAT IT MEANS
Part	IV

45
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Tune Back In Now

Such that 0 ≤ 𝛼9 ≤ 𝐶 for all 𝑖 and ∑ 𝛼9𝑦9U
9^_ = 0

Interpretation time: what the heck are the 𝜶𝒊?
1. Lagrangian view: the cost associated with each point; how 

much the objective would improve if we got to move that 
point

2. New view: the raw importance of each point

Explanation: 

• The first goal is to maximize the alphas, but there’s a 
second term punishing big alphas

• When is that term big? 46

Simplified	Dual:	max
g

∑ 𝛼9U
9^_ 	− _

W
∑ ∑ 𝛼n𝛼9𝑦n𝑦9𝑥9"𝑥nU

n^_
U
9^_

∑ 𝛼n𝑦n𝑥n"𝑥U
n^_ + b:	Signed	distance

max
g

P𝛼9

U

9^_

	−
1
2
PP𝛼n𝛼9𝑦n𝑦9𝑥9"𝑥n

U

n^_

U

9^_
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What Support Looks Like

Large 𝛼9 hurt us when they’re 
associated with observations that are 

1) From the same class

2) Pointing in the same direction

Large 𝛼9 help us when they’re 
associated with observations that are 

1) From different classes

2) Pointing in the same direction

47

max
g

P𝛼9

U

9^_

	−
1
2
PP𝛼n𝛼9𝑦n𝑦9𝑥9"𝑥n

U

n^_

U

9^_

http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf

Simplified	Dual:	max
g

∑ 𝛼9U
9^_ 	− _

W
∑ ∑ 𝛼n𝛼9𝑦n𝑦9𝑥9"𝑥nU

n^_
U
9^_

∑ 𝛼n𝑦n𝑥n"𝑥U
n^_ + b:	Signed	distance
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Further, our predictions depend on the 𝛼9
Decision = 𝑤"𝑥 + 𝑏 = ∑ 𝛼n𝑦n𝑥n"𝑥U

n^_ + b
• We make our decision by 

• Measuring the test point 𝑥’s similarity to each training point 𝑥n
• Weighting by the training point’s overall importance (𝛼n)
• Summing over all training points, comparing the + score 

against the – score (set by 𝑦n)

• SVMs are an intelligent form of nearest neighbors!!!
• We consider how similar our new point is to each training point

• In addition, each training point has a raw importance score

• (What does KNN think about SVMs?)
48

Simplified	Dual:	max
g

∑ 𝛼9U
9^_ 	− _

W
∑ ∑ 𝛼n𝛼9𝑦n𝑦9𝑥9"𝑥nU

n^_
U
9^_

∑ 𝛼n𝑦n𝑥n"𝑥U
n^_ + b:	Signed	distance
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Example: classify 𝑂 = (1,0)

P𝛼n𝑦n𝑥n"𝑥
U

n^_

+ b

Contributions:
– (.03)(-1)(-2) = .06

– (.1)(-1)(-2) = .2

– (.1)(1)(1) = .1

– (.03)(1)(2) = .06

– b =.16

Total: .58 -> classify as +

49

𝑂

𝛼 = .1
�	= 1

𝛼 = .03
�	= 2

𝛼 = .03
�	= −2

𝛼 = .1
�	= −2

Simplified	Dual:	max
g

∑ 𝛼9U
9^_ 	− _

W
∑ ∑ 𝛼n𝛼9𝑦n𝑦9𝑥9"𝑥nU

n^_
U
9^_

∑ 𝛼n𝑦n𝑥n"𝑥U
n^_ + b:	Signed	distance
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Kernels

There’s something weird about 
our calculation

• Our vector (1,0) is as similar to 
(2,0) as it is to (2,20)

• Is there a more meaningful 
measure of similarity?

50

Simplified	Dual:	max
g

∑ 𝛼9U
9^_ 	− _

W
∑ ∑ 𝛼n𝛼9𝑦n𝑦9𝑥9"𝑥nU

n^_
U
9^_

∑ 𝛼n𝑦n𝑥n"𝑥U
n^_ + b:	Signed	distance



KERNELS
Part	IV:	Part	II
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Kernels

Maximum margin view:

• Kernels map to a larger space where the classes can be 
separated by a plane

• Want to pick the plane with most margin

Neighbors view:

• Kernels define a measure of similarity between 
observations

• Classify based on test point’s similarity to training points, 
and importance of training points

52

Simplified	Dual:	max
g

∑ 𝛼9U
9^_ 	− _

W
∑ ∑ 𝛼n𝛼9𝑦n𝑦9𝑘(𝑥n, 𝑥9)U

n^_
U
9^_

∑ 𝛼n𝑦n𝐾(𝑥n, 𝑥)U
n^_ + b:	Signed	distance
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Example kernel: RBF

RBF kernel:

𝑟𝑏𝑓 𝑥, 𝑦 = 𝑒�
���
�

�

• Based on actual distance between points

• Similarity decreases rapidly because of 
𝑒��9�R

• 𝛾 determines a ‘cliff’ because of the ( )2

• if x and y are within 𝛾, fraction <1

• →	they are more similar than you think

• It’s like a fishbowl lens

53

Simplified	Dual:	max
g

∑ 𝛼9U
9^_ 	− _

W
∑ ∑ 𝛼n𝛼9𝑦n𝑦9𝑘(𝑥n, 𝑥9)U

n^_
U
9^_

∑ 𝛼n𝑦n𝐾(𝑥n, 𝑥)U
n^_ + b:	Signed	distance
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Kurtz, Sanders, Mustard, and Mustang

RBF kernel has a geographic character to 
it: 
it uses literal Euclidean distance

Other kernels (similarity measures) exist 
for:

54

http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/

• Documents

• Points in graphs

• Randomly adding 
polynomial terms

• Geostatistics

• Images

• Sound

• Many more

Simplified	Dual:	max
g

∑ 𝛼9U
9^_ 	− _

W
∑ ∑ 𝛼n𝛼9𝑦n𝑦9𝑘(𝑥n, 𝑥9)U

n^_
U
9^_

∑ 𝛼n𝑦n𝐾(𝑥n, 𝑥)U
n^_ + b:	Signed	distance
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What makes a valid kernel?

What makes a valid kernel?

a) Think of a set of features and compute the inner product 
post-transformation

b) Find a function so that no matter what points x you feed in, 
the matrix you build is Positive Semi-Definite (all 
eigenvalues ≥ 0)

a) This is a Reproducing Kernel Hilbert Space

b) Don’t ask. 

…Or take ES 201 : )
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Simplified	Dual:	max
g

∑ 𝛼9U
9^_ 	− _

W
∑ ∑ 𝛼n𝛼9𝑦n𝑦9𝑘(𝑥n, 𝑥9)U

n^_
U
9^_

∑ 𝛼n𝑦n𝐾(𝑥n, 𝑥)U
n^_ + b:	Signed	distance
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What if I need to use these?

Practical kernel advice:

• Consider domain-specific kernels

• If more features than observations, you probably want 
linear

• If more observations than features, try RBF, but it may be 
slow

Other practical advice:

• SKlearn points out that its kernel implementation is too 
slow for >5-10K observations / features
• LinearSVC scales to millions, though no kernels allowed

56

Simplified	Dual:	max
g

∑ 𝛼9U
9^_ 	− _

W
∑ ∑ 𝛼n𝛼9𝑦n𝑦9𝑘(𝑥n, 𝑥9)U

n^_
U
9^_

∑ 𝛼n𝑦n𝐾(𝑥n, 𝑥)U
n^_ + b:	Signed	distance



REVIEW

57
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Summary

58

In toto, here’s what should stick:

• SVMs define bundles, not boundaries

• Convex optimization (here) is a better 
version of derivative = 0
• Lagrangian, Primal, Dual; 

• Costs, Demons, Capitalism

• SVMs are BOTH
• Drawing maximum margin plane

• Measuring similarity to and importance of 
neighbors

• Kernels are how we define custom 
similarity

Simplified	Dual:	max
g

∑ 𝛼9U
9^_ 	− _

W
∑ ∑ 𝛼n𝛼9𝑦n𝑦9𝑘(𝑥n, 𝑥9)U

n^_
U
9^_

∑ 𝛼n𝑦n𝐾(𝑥n, 𝑥)U
n^_ + b:	Signed	distance
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Q: What does logistic regression think of 
LDA/QDA?

A: What does KNN think of SVMs?

59


