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What do you get when you cross an elephant and a rhino?

Q: What does logistic regression think of
LDA/QDA?
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What do you get when you cross an elephant and a rhino?

Q: What does logistic regression think of
LDA/QDA?
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LDA/QDA tell the complete story of how the data came to be

Correspondingly, it makes heavy assumptions, and much
can gowrong

A: You’re modelling too much

Logistic doesn’t care how the X data came to be, it only tells
the story of the Y data

Since there are fewer assumptions, the math is more
advanced and the method is slower
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Anyone take the old SATs?

SVM:Logistic Regression::Logistic
Regression:QDA
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Less IS More

SVMs

Only predict the final class, not the
probability of each class

Make no assumptions about the
data

Still work well with large numbers
of features
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Our Path

* |: Get comfy with the key expressions and concepts
e Bundles, signed distance, class-based distance

* |I: Extract the highlights of SVMs from the loss function

L) Only certain observations matter; effects of the C parameter

* |ll: Derivation of the primal and dual problems, fulfilling
the promises from Part Il

— Lagrangian, Piramal/Dual games, KKT conditions as souped-up
“derivative=0"

* LV: Interpret the dual problem and see SVMs in a new way
SVMs can be seen as an advanced neighbors-style algorithm
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Act |: Setting

» Like Logistic regression, SVMs set three parameters:
a weight on each feature (w1l and w2) and an intercept (b)

e This is MORE than we need to define a line
* Sowhat are we really defining?
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wlx + b : Signed distance

Key Concept #1

* Viaw!x + b,w and b define an output at each point of input
space .
» This is our first key quantity, and will wix + b

live In our ‘reminder corner’
« wlx + b gives us: y
* The rule to classify test points: if wlx +

/

b is + classify as +; if - classify as - T~ | \
* A new measure of distance [from the N 000
decision boundary in units of 1/|[w]] T

* We [arbitrarily] define +1 and -1 as the | \ |
margin for a given w, b (bundle)
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wlx + b : Signed distance

Live Demo

DEMO:

In the notebook, we manipulate w1, w2, and b to see how they
affect the bundle produced

Conclusions:

* w1l and w2 control the slope of the bundle, and the larger
the norm, the more tightly packed the bundle is

* b controls the height of the bundle, but its effect depends
on the magnitude of wl and w2
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wlx + b : Signed distance

Key Cconce pt H2 y;(wTx; + b): Class-based distance

* The expression y;(wlx; + b) occurs a ton with SVMs

* |t takes the signed distance function and multiplies it by an
observation’s class

« We're calling it “class-based distance”
° yiw'x; + b) =

Example: *
. .

yi(w x; + b)
— Is O on at the decision boundary

— is above 1if you are safely beyond your margin

— is1(orless) if you are crowding the margin or
misclassified

— Is negative if you’re really messing up
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wlx + b : Signed distance
y;(wlx; + b): Class-based distance

A table of the key quantities at each point

4
Class Signed Class-based | Loss
Distance distance
1 A - -3 3
\_;::\—\ -l

None
B - -1 1 Marginal
C + 2 2 None
D - 2 -2 Misclass
E + -1 -1 Misclass
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wlx + b : Signed distance
Kerne l S y;i(wTx; + b): Class-based distance

The same ‘signed distance’ concepts

apply to kernels, although: 100

1. The lines get wavy

2. The way we measure distance is )
less clear ]

Later on, we’ll learn 11

e What kind distance is used for ok 1 : : 4
kernels

 Standard distance isn’t what you

think
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Recap

wlx + b : Signed distance
y;(wlx; + b): Class-based distance

Recap:

We’re picking a best bundle (set of weights and b)

The bundle implies a signed ‘distance’ w! x + b over the
space, where O Is the decision boundary

Class-based distance y;w’x; + b is directly related to how
sad we are about a training point

Kernels put a wavy set of lines over the input space,
Instead of level ones
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wlx + b : Signed distance

Hin ge LOoSsS y; (wTk—+yh(ulasstbh3etadistance

We saw 1was a critical value for y;(w’x; +

b)
penalty (loss) size
 Above 1 means you’re safely within your margin
* Below 1 means you’re crowding the margin
* Below 0 means you’re misclassified
Make it a loss function: S— s

incorrectly classified correctly classified
distance from boundary

 Negate so bigger values are worse, not Loss = max(1 — y;(w™x; + b), 0)

better,

* +1so0 points within their margin get loss
O instead of -1

* |f the loss would be negative, record O
vw I n Ste a d CS109A, PROTOPAPAS, RADER .




LOSS

wlx + b : Signed distance
1—y;(wPx; + b): Loss

LA

Which do you like best?
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Act |Il: Loss

wlx + b : Signed distance
1—y;(wPx; + b): Loss

* Which do you like best?
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wlx + b : Signed distance

Th e LOSS F un Ct' on W2 + C ¥ rgin max(1 — y;(wTx; + b),0): Loss (margin+invasion)

* Tradeoff exists between wanting wider margins and discomfort with
points inside the margins

Loss(w, b, train data) = z max(1 — y;(wlx; + b),0) + A||w||?
train
* View A: minimize hinge loss, L, regularization

Loss(w, b, train data) = ||w||? + C z max(1 — y;(w’x; + b),0)

train

* View B: maximize the margin, but pay a price for points inside the
margin (or misclassified)
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wlx + b : Signed distance

Live Demo W2 + C ¥ rgin max(1 — y;(wTx; + b),0): Loss (margin+invasion)

DEMO:

In the notebook, we manipulate C and see how the solution
found by SVM changes

Conclusions:

* Big (C: we do anything to reduce invasion losses

* |f seperable: finds separating plane
* If not: lumps non-separable points into margin, separates the
rest
* Small C: we stop caring about invasion (or even
misclassification); just grow the margin
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wlx + b : Signed distance

O bse rva tl ons W2 + C ¥ rgin max(1 — y;(wTx; + b),0): Loss (margin+invasion)

Observations from SVM loss:
1. Hinge loss zero for most points
— most points are behind the margin
2. Moving/deleting these points
wouldn’t change the solution =

./ /3. The outcome for a test point only i
depends on a handful of training
points

5 Should be able to write output value L
as combination of (-2,1) and (1,2) 5
~2 o ° %
* Key question: HOW can we determine =3 * ¢ \
a test point’s class using the few » . , , . .

Important training points?

Leads to re-casting as a fancified
neighbors algorithm

Gw CS109A, PROTOPAPAS, RADER 22



wlx + b : Signed distance

Wh at tO WatC h fO I W2 + C ¥ rgin max(1 — y;(wTx; + b),0): Loss (margin+invasion)

Our reward for sitting through the math:
1. Arecipe for the most important training points

2. A way to make decisions while throwing out most of the
training data

3. A new and more powerful view of what SVMs do

Like studying linear regression’s loss minimization via
calculus, but with a harder target and more advanced math
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MATH

Ideas: http://cs229.stanford.edu/notes/cs229-notes3.pdf
Soft-Margin derivation: http://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM _kernels/lecture _notes/svm/svm.pdf



wlx + b : Signed distance

Au th ors P rOOf Wl + C X trqin max(1 — y;(wTx; + b), 0): Loss (margin+invasion)

Outline proof steps

1.
2.

3.

Re-cast the loss function as a convex optimization

Re-write the one-player game into a two-player game
(Primal)

Rewrite the two-player game into an equivalent game with
opposite turn order (Dual)

Observe that assigning (mostly-zero) importance scores to

each training point is equivalent to solving the original
optimization (KKT)

Observe that our original SVM formulation was using a

very counter-intuitive definition of distance, and we can do
bette r CS109A, PROTOPAPAS, RADER 75



wlx + b : Signed distance

O P timization Iwl|? + ©@Fective: pwi{ T C55 (v T Sonsrdiis0dc Bdss trfafgirtnvasion)

Our goal:
miglllwll2 +C z max(1 — y;(wTx; + b), 0)
w,

train
First, re-write to an optimization problem with constraints:

1N
min ZIwl2+¢ ) &
i=1
Such that
§&=>1—y;,(wlx;+b),& =0 foralli
Basically, we delete loss and introduce some ¢; variables that you get to set

Why is this the same problem?

* ¢, must be at least as big as the loss: you’d be dumb to set them to anything bigger
than the loss

* Now you’re back to minimizing norm+loss
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Yeah, ‘hypothehcally’ o wTx + b : Signed distance

Objective: % wll> + C X, & Constraints: & =1 —y;(WTx; +b), §=0

* You’re trying to plan your week

You have to choose how much time you allocate to study, work,

etc.
e Therenpdg FprdGopptrai NMI®imum 4 hours of
work-study sleep
(Per week) .
¢ CS109 maximum 1days  Noasec OH on Wednesday -
late «  Jobinterview Thursday

. CS207 due by Thursday > Project meeting by Monday

e What if the constraints were flexible?

* You’d know what the cost of being each late day is
= * And how about a reward for getting work done early!

, PROT PAS, RADER 27



wlx + b : Signed distance

La grange Multi P liers Cigiestiian J I *HCOL 6, €oMatraintt: £y xosb) ¥ & P)T = ié,

* This brings us to the Lagrangian

=/, Ittakes all the mandatory requirements and attaches costs to
them

e Foré; >1—y;(wlx; + b) we attach a cost a; for each unit
that 1 — y;(wx; + b) exceeds ¢;
 Likewiseforé; >0

* Overall, we get
n

vl +YcZa- nQall 548 i Y. B

—

1=1 1=1 Y
Original objective Cost (or benefit) from ¢; = 1 — Cost (or benefit) from & > 0
y;(wTx; + b) “objective” “objective”

vv CS109A, PROTOPAPAS, RADER 28




wlx + b : Signed distance

Doom Khazad Lagrangian: 3 IIWII? + C Ty & + Tty i1 — yiw'x; +b) — &1+ X1ty —Bidi

» But there aren’t actually
penalties for each day late, or
rewards for being early...

* What you needs a demon

* The demon takes any plan you
make and manipulates the q;
and f; costs

* So you better present a plan You shall not pass
that actually meets the
constraints

gw CS109A, PROTOPAPAS, RADER 29




wlx + b : Signed distance

P Flm a I S C re a M Lagrangian: % WwlZ2+CYr &+ X a1 —y;(wWlx; +b) —&1+X0, —Bi&

4/ We have a two-player game (you and demon) equivalent to
the original hard-constraint problem:

You choose the parameters

l—j—\ n
mmmax—||w||2+62a > a1 - yiwx +b) = & z B

w,b,&; 120
i=1

Then the demon chooses the costs
* The demon will try to screw you, so you’ll only propose
points that meet all constraints
* Andyou’ll try to minimize the original objective

* Level one complete: we wrote the “Primal Problem”
* Now, like Gandalf and the Balrog, there’s a Duel

vw CS109A, PROTOPAPAS, RADER 30



wlx + b : Signed distance

Capilalism
4‘ Lagrangian: >[I + C By & + Ziy i1 — yiwTx; + b) — &1+ 2y =i

 Still pondering how to set your schedule,
an Econ 101 student walks by

* “The free market solves everything”
«  “What about companies polluting?”

«  “Well, charge them for each ton of carbon they emit
- If you get prices right, they’ll stop”

* Could you set the costs/rewards yourself and let the free
market minimize the objective?

 Can you set costs that guide them to the same solution as the
original?

UW CS109A, PROTOPAPAS, RADER 31




wlx + b : Signed distance
The Dual Lagrangian: 2 [Wl2 + € S1e, & + Siy a1 — ywTx, +b) — &1+ 50y ik

Reversing the turn order (the min and max), we get

You set the costs/rewards

ﬁé;(\mlrfl—”WHZ-l-ngl‘anl 1-— yl(W xl+b)_€l z —Biéi

=0

-

The market tries to minimize the objective, including any costs/subsidies you offer

=.//* NoO guarantee there are prices that force the free market to obey
constraints and give the same solution as the original

« However, because ...

* 1) the objective is convex and 2) the constraints are convex and 3) there is
some solution that fits the constraints (pick ¢ large)]:

« ...there are such prices, even if they’re hard to write down

vv CS109A, PROTOPAPAS, RADER 32



wlx + b : Signed distance

KKT Conditions Lagrangian: 2 [wl|? + C X1y & + SIy g1 — yiwx; + b) — &1+ Xy —fié;

IF the dual can be rigged to give the same solution as the
original

THEN we get helpful facts about the solution called the KKT
conditions

« KKT can be used to check a candidate solution, or derive
facts of the eventual solution
1. Derivative of Lagrangian (wrt any parameter) is O
2. Derivative of Lagrangian (wrt cost of violating an equality) is O
3. Constraint function < 0 (i.e. constraints are satisfied)
4. Cost*constraint = 0 (only binding constraints get non-zero
costs) .

NAact ~ N /TAAnctFea AarAa mAc T+ v AN

)|



That was... mostly Econ

wlx + b : Signed distance
Lagrangian: >[I + C By & + Ziy i1 — yiwTx; + b) — &1+ 2y =i

Let’s recap

Wrote our optimization problem (minimize loss)

Massaged into a convex optimization problem

* Horary for hinge loss and convexity

Applied Lagrangian to make progress on the constrained

optimization

e (Costsinstead of mandates, but a demon controls costs

Convexity let us study the dual problem instead
* We control costs, but it’'s not always possible to set them well

KKT gave us a bunch of useful properties we’re about to

apply

CS109A, PROTOPAPAS, RADER
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That was...

mostly Econ

. 1
Lagrangian:  [wl|? + € 57y & + Xy aq[1— y;(wx; + b)

wlx + b : Signed distance

— &+ i1 B

Let’s recap

Wrote our optimization problem @

Massaged into a convex optimiz ion prolgie
o ry for hinge loss and conv ity

Ap
OP

Convexity let us study the d
* We control costs, but it’'s not always possible to set them well

.\‘
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Qa0<0 M3 ke pggress o

FESIN
LN

A
- NQ’~

\ s

{
’

gine constrained
J
controls costs

Instead

KKT gave us a bunch of useful properties we’re about to

apply
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. . wlx + b : Signed distance
Th e fl rSt ru I e Of K KT I S Lagrangian: % WwlZ2+CYr &+ X a1 —y;(wWlx; +b) —&1+X0, —Bi&

1)W Zl 1al[yl ]

Rule 1 (for w) says that

W—||w||2+62<a Eall—yxw X+ b)) — &+ 2 ~fifi = 0

The derivative is practlcally tr|V|aI:

n

w+ z ai[=yixi] =0

n
w :Zai[ylxl]
i=1
Conclusions
The w are just a weighted sum of the training points

If we know «;, we can make classification decisions using only the x
and y data
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. wlx + b : Signed distance
Th e S eCO n d ru | e Of K KT I S Lagrangian: % WwlZ2+CYr &+ X a1 —y;(wWlx; +b) —&1+X0, —Bi&

w =Xz ailyixi]
Rule 1 (for b) says that 2) Nitq iy = 0

n

vb—||w||2+62a 2, il =7+ b) =i Z ~fifi = 0

The derivative is again tr|V|aI:

Conclusions

* The a; assigned to the positive class cancel with the a; assigned to
the negative class

* Notveryinsightful, but allows a simplification later
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The third rule of KKT is w x4 b:Signed distance

1
Lagrangian: - Iwll> + CY & + Xy ai[1 —yiwTx; +b) —&1+X7, —Bi&

) w =Yg a;[yix;]

Rule 1 (for ;) says that 2) Lim @i =0
1 n n n 3)C =aj +f;
Ve, SIWIZ+C ) &+ ) agll = yiw™o +b) = &l + ) g = 0
i=1 i=1 i=1
The derivative is again trivial:
C=aj+,8j, fOI‘a||j

Conclusions

* The cost of setting ¢; above the loss and the cost of setting ¢; below O
add up to the total cost associated with ¢;

* Again, not terribly informative, but useful on the next slide

vw CS109A, PROTOPAPAS, RADER
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wlx + b : Signed distance
Lagrangian: - [wll? + C Ty & + Ty a1 — (W + b) — &1+ 2y —Bié;

Dw =YL, a;[yix]
2) Y ay; =0

That’s all the facts we need. Let’s simplify the dual. NC it

gv CS109A, PROTOPAPAS, RADER 40




wlx + b : Signed distance

The HardeSt Part. - IS Cleaning Up Lagrangian:%llwllz+CZ?=1fi+Z’i1=1ai[1—yi(wai+b)—fi]+2?=1—ﬁi€i

) w =Yg a;[yix;]

Starting from the Lagrangian 2) X @y =0

n n n 3)C =aj +f;
1
EWTW + CE Si + z a;i[1—y;(w'x; + b) — &] +z —Bisi
i=1 i=1 =1
Fact 3 (c—a;—p;=0forallj) to kill C
Rearrange
1 n n n n
wiw+ > €&+ ) =&+ ) —a;i& ) ai[1—y;(w'x; + b)]
T Q6 T ) i)
Apply the fact

http://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM _kernels/lecture_notes/svm/svm.pdf
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wlx + b : Signed distance

The HardeSt Part. - IS Cleaning Up Lagrangian:%llwllz+CZ?=1fi+Z’i1=1ai[1—yi(wai+b)—fi]+2?=1—ﬁi€i

) w =Yg a;[yix;]

. 2) Yz a;y; = 0
Copy over from slide above ) Sy

n
1 T T
oW w4+ ) o[l —y;(w'x; +b)]
i=1
Fact 2 (X", a;y; = 0) to Kill b
Rearrange
1 n n
§WTW + Z a;i[1—y;(w'x)] + Z a;y;b
l= 1=
Apply the fact

! T n T
“wTw + Y ag[1 = yy(w"x)]
i=1

http://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM _kernels/lecture_notes/svm/svm.pdf
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. YTk i Ashysignedsdisiriece
The HardeSt Part. .. IS Cleanlng Up Lagrangian:%llwllz+CZ?=1fi=‘-l/-1}Z?=1ai[1—yi(inTxi+b) — &1+, —Bié

1)W Zl 1al[yl ]

Copy over from slide above
n

1 T 1 T
G W ai[1—y;(w x;)]
=1
Fact 1 (w = Y7, a;[y;x;]) to Kill w
Rearrange
1 n n
EWTW - z a;y;(w'x;) + z a;
i=1 i=1
Apply the fact

'M=

1 n n n
Eza (Z] YJXJ Z a;yi z y] ] +zal

=1 ]:1 =1 =1

http://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM _kernels/lecture_notes/svm/svm.pdf
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=1 QY] Tx + b: Signed distance

The HardeSt Part. - IS Cleaning Up Lagrangian:%IIWIIZS'FT‘(DEIEQ9“%'2**?‘62&1-“%@1_%2?_1—06{]&’2&&'xﬁlfi

Copy
n n n n
1 T
Ezai[ylxl]zajbﬁ ] Z a;yi z y] ] +Zai
=1 j=1 =1 j=1 =1
Simplify
1 n n
Ezza] ly]ylx x ZZ ly]ylx x Z
=1 j=1 =1 j=
Final form:
n n n
1
max ) a; —5 aia;y;yiXi X;

1
Suchthat0 < a; < Cforalliand /-, a;y; =0

vw CS109A, PROTOPAPAS, RADER 44



Part IV

WHAT IT MEANS




D=1 Y;X] Tx + b: Signed distance

TU ne BaC k I N N OW Simplified Dual: maxZ" 1@ ——Z" 1 201 0y Vi X] X

1 n n
w15 S st
=1 =1

Suchthat0 < a; < Cforalliand ¥, a;y; =0
Interpretation time: what the heck are the a;?

1. Lagrangian view: the cost associated with each point; how
much the objective would improve if we got to move that

point
2. New view: the raw importance of each point
Explanation:
* The first goal is to maximize the alphas, but there’s a
second term punishing big alphas
®¥. When is that term big? e

46



=1 QY] Tx + b Slgned dlstance

What Support Looks Like Simplfied Dual: max 1y, ~L1s Ty ey yecl

n 1 n n
ma? i z L Ez z 2GRy lx L 2 vectors that are similar but predict the

i=1 i=1j=1 same class are redundant
Large a; hurt us when they’re
associated with observations that are
1) From the same class
2) Pointing in the same direction

Insight into inner products, graphically: 2 very
, 2 dissimilar (orthogonal) vectors don’t very similar x; x; vectors that predict difft

La rge a; help us when they re count at all classes tend to maximize the margin width
associated with observations that are
1) From different classes ) X
2) Pointing in the same direction \

http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
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D=1 Y;X] Tx + b: Signed distance

Simplified Dual: maxZ" 1 Qi ——Zn 12” 14%Y;Yi x] Xj

Further, our predictions depend on the ¢;
Decision =w'x + b = ¥7_; a;y;x; 'x+b

* We make our decision by
* Measuring the test point x’s similarity to each training point x;
* Weighting by the training point’s overall importance («;)
* Summing over all training points, comparing the + score
against the - score (set by y;)
=4~ SVMs are an intelligent form of nearest neighbors!!!
* We consider how similar our new point is to each training point
* |In addition, each training point has a raw importance score
* (What does KNN think about SVMs?)

CS109A, PROTOPAPAS, RADER 48




Y 7.1 a;y;x] x + b: Signed distance

SlmpllfIEd Dual: maaXZi=1 a; — EZi:l Zj:l aia;y;yixi Xj

Example: classify O = (1,0)

z @;yjx; x + b j
j=1 ‘-”o%
Contributions: 1-
— (.03)(-1)(-2) = .06 0
— (NENE2)=.2 ol
— (DM =1 2]
— (.03)(1)(2) = .06 -3
— b =16

Total: .58 -> classify as +

vw CS109A, PROTOPAPAS, RADER 49



n T . o g
| Dj=1yjXj X + bl. Signed distance
Ke r n e S SlmpllfIEd Dual: mo?leﬂl a; — EZ?=1 Z?:l ajaiyjyixl-ij

There’s something weird about

our calculation a
* Ourvector (1,0) is as similar tozy .
(2,0) asitis to (2,20) Y
* Isthere a more meaningful  of N
measure of similarity? “ad
g’- - 5 \1 ;3

TS
\ -4
¥ / p &‘
- 4
)
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KERNELS



Yi=19;¥;K(xj, x) + b: Signed distance
Ke r n e | S Simplified Dual: ma?len:l a; — %Z?ﬂZ}Ll aja;y;yik(x), x;)

Maximum margin view:

 Kernels map to a larger space where the classes can be
separated by a plane

* Want to pick the plane with most margin

Neighbors view:

* Kernels define a measure of similarity between
observations

* Classify based on test point’s similarity to training points,
and importance of training points
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Yi=19;¥;K(xj, x) + b: Signed distance

Exa m p I e ke r n e I . R B F Simplified Dual: mo?len:lai - %Z?ﬂZ}‘:lajaiyjyik(xj,xi)

RBF kernel:

rbf (x,y) = e_(w)

 Based on actual distance between points

 Similarity decreases rapidly because of
e—dist

 y determines a ‘cliff’ because of the ()2
* ifxandyarewithiny, fraction <1
* — theyare more similar than you think

It’s like a fishbowl lens
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Yi=19;¥;K(xj, x) + b: Signed distance

Kurtz, Sanders, Mustard, and Mustang Simplfied Dual: max S, o, — L1, T, gy ik x)

RBF kernel has a geographic character to
It:

It uses literal Euclidean distance

Other kernels (similarity measures) exist
forDocuments * Geostatistics

* Pointsingraphs ¢ Images

* Randomly adding ¢ Sound
polynomial terms Many more

http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/
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Yi=19;¥;K(xj, x) + b: Signed distance

W h a t m a ke S a Va | i d ke N e I? Simplified Dual: mO?XZ?ﬂ a; —§Z?=1Z?=1 aja;y;yik(x;, x;)

What makes a valid kernel?
a) Think of a set of features and compute the inner product
post-transformation

b) Find a function so that no matter what points x you feed in,
the matrix you build is Positive Semi-Definite (all

eigenvalues = 0)
a) This is a Reproducing Kernel Hilbert Space

b) Don’t ask.
...Or take ES 201 :)
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Yi=19;¥;K(xj, x) + b: Signed distance

What if | need to use these? Simpiied Dual: max Ty @ — L5y T 2y yik 37 0

Practical kernel advice:
* Consider domain-specific kernels

* If more features than observations, you probably want
linear

* If more observations than features, try RBF, but it may be
slow

Other practical advice:
* SKlearn points out that its kernel implementation is too
slow for >5-10K observations / features
* LinearSVC scales to millions, though no kernels allowed
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REVIEW
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ummary

Yi=19;¥;K(xj, x) + b: Signed distance

Simplified Dual: max 2.7 ; a;
a

1
- EZ?=1 Z}l=1 aja;y;yik(x;, x;)

In toto, here’s what should stick:

SVMs define bundles, not boundaries

Convex optimization (here) is a better
version of derivative = 0

* Lagrangian, Primal, Dual;

 Costs, Demons, Capitalism

SVMs are BOTH

 Drawing maximum margin plane

 Measuring similarity to and importance of
neighbors

Kernels are how we define custom
S i m i I a r i ty CS109A, PROTOPAPAS, RADER
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Q: What does logistic regression think of
LDA/QDA?

A: What does KNN think of SVMs?

AAAAAAAAAAAAAAAAAAAAAAA
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