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Outline

• Image analysis: why neural networks?

• Multi Layer Perceptron refresher

• Convolutional Neural Networks
• How they work

• How to build them

• Building your own image classifier

• Evolution of CNNs
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Image analysis – why neural networks?

Imagine that we want to recognize swans in an image:
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Round,	elongated	
oval	with	orange	
protuberance	

Long	white	
rectangular	shape	
(neck)

Oval-shaped	white	
blob	(body)
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Cases can be a bit more complex…

4

Round,	elongated	
head	with	orange	
or	black	beak

Long	white	neck,	
square	shape

Oval-shaped	white	
body	with	or	
without	large	white	
symmetric	blobs	
(wings)
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Now what?
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Round,	elongated	head	with	
orange	or	black	beak,	can	
be	turned	backwards

Long	white	neck,	can	bend	
around,	not	necessarily	
straight

White	tail,	generally	far	
from	the	head,	looks	
feathery

White,	oval	shaped	
body,	with	or	without	
wings	visible

Black	feet,	under	
body,	can	have	
different	shapes

Small	black	circles,	
can	be	facing	the	
camera,	sometimes	
can	see	both

Black	triangular	
shaped	form,	on	the	
head,	can	have	
different	sizes

White	elongated	piece,	can	
be	squared	or	more	
triangular,	can	be	obstructed	
sometimes

Luckily,	the	
color	is	
consistent…
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We need to be able to deal with these cases.
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Image features

• We’ve been basically talking about detecting features in 
images, in a very naïve way.

• Researchers built multiple computer vision techniques to deal 
with these issues: SIFT, FAST, SURF, BRIEF, etc.

• However, similar problems arose: the detectors where either too 
general or too over-engineered. Humans were designing these 
feature detectors, and that made them either too simple or 
hard to generalize.
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FAST	corner	
detection	
algorithm

SIFT	feature	
descriptor
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• What if we learned the features to detect? 

• We need a system that can do Representation Learning (or 
Feature Learning).

Representation Learning: technique that allows a system to 
automatically find relevant features for a given task. Replaces 
manual feature engineering.

Multiple techniques for this: 
• Unsupervised (K-means, PCA, …).
• Supervised (Sup. Dictionary learning, Neural Networks!)
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MULTILAYER PERCEPTRON
Or	Fully	Connected	Network	(FCN)
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Perceptron to MLP
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𝑥"

𝑥#

𝑥$

𝑥%

The	PerceptronMultilayer	Perceptron

𝑌 = 𝑓(𝛽+ + 𝛽"𝑥" + 𝛽#𝑥# + 𝛽$𝑥$ + 𝛽%𝑥%)

Input	layer

Hidden	Layer

Output	Layer

They	can	be	more	complex…
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Main advantages of MLP

• Ability to find patterns in complex and messy data.

• Network with one hidden layer and sufficient hidden nodes 
has been proven to be an universal approximator.

• Can take the raw data as input, and learn its own features 
internally to better classify.

• Amount of human involvement is low: we only prepare and 
feed the data. No feature engineering needed.

• MLP makes no assumption on the distribution of input 
data.
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Combatting overfitting: Dropout

13

• Method of regularization consisting of randomly dropping 
nodes during training.

• Similar to bagging.

• We re-randomize our network at each training iteration.

• During test time, we use the full network where nodes are 
scaled by their probability of appearing.
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Multilayer perceptron - visualization

Let’s have a look at a cool tool to play with MLPs: 

https://playground.tensorflow.org/
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Drawbacks

• MLPs use one perceptron for each pixel in an image, 
multiplied by 3 in RGB case. the amount of weights rapidly 
becomes unmanageable for large images.

• Training difficulties arise, overfitting can appear.

• MLPs react differently to an image and its shifted version –
they are not translation invariant.

15
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Drawbacks

16

Imagine	we	want	to	build	a	cat	detector	with	an	MLP.	

In	this	case,	the	red	weights	will	be	
modified	to	better	recognize	cats

In	this	case,	the	green	weights will	
be	modified.

We	are	learning	redundant	features.	Approach	is	not	robust,	as	cats	could	appear	in	
yet	another	position.
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Drawbacks

Example: CIFAR10

Simple 32x32 color 
images (3 
channels)

Each pixel is a 
feature: an MLP 
would have 
32x32x3+1 = 3073 
weights per neuron!
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Drawbacks

Example:  ImageNet

Images are usually 224x224x3: an MLP 
would have  150129 weights per neuron. 
If the first layer of the MLP is around 128 
nodes, which is small, this already 
becomes very heavy to calculate.

Model complexity is extremely high: 
overfitting.
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CONVOLUTIONAL NEURAL NETWORKS
The	smart	way	of	looking	at	images
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Basics of CNNs

We know that MLPs:
• Do not scale well for images

• Ignore the information bought by pixel position and correlation with 
neighbors

• Cannot handle translations

The general idea of CNNs is to intelligently adapt to properties 
of images:
• Pixel position and neighborhood has semantic meaning. 

• Elements of interest can appear anywhere in the image.

20
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MLP CNN

CNNs are also composed of layers, but those layers are not fully 
connected: they have filters, sets of cube-shaped weights that are 
applied throughout the image. Each 2D slice of the filters are 
called kernels.

These filters introduce translation invariance and parameter 
sharing.

How are they applied? Convolutions!

Basics of CNNs
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Convolution and cross-correlation

• Convolution of f and g (𝑓 ∗ 𝑔) is defined as the integral of 
the product, having one of the functions inverted and 
shifted:

𝑓 ∗ 𝑔 𝑡 = 1𝑓 𝑎 𝑔 𝑡 − 𝑎 𝑑𝑎
�

6
• Discrete convolution:

𝑓 ∗ 𝑔 𝑡 = 7 𝑓 𝑎 𝑔(𝑡 − 𝑎)
8

69:8
• Discrete cross-correlation:

𝑓 ⋆ 𝑔 𝑡 = 7 𝑓 𝑎 𝑔(𝑡 + 𝑎)
8

69:8 22

Function	is	
inverted	and	
shifted	left	by	t
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Convolutions – step by step
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Convolutions – another example

24
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Convolutions – 3D input
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Convolutions – what happens at the edges?

If we apply convolutions on a normal image, the result will be 
downsampled by an amount depending on the size of the 
filter.

We can avoid this by padding the edges in different ways.

26
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Padding

27

Full	padding.	Introduces	zeros	such	that	all	
pixels	are	visited	the	same	amount	of	times	by	
the	filter.	Increases	size	of	output.	

Same	padding.	Ensures	that	the	
output	has	the	same	size	as	the	
input.
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Convolutional layers

28

Convolutional	layer	with	four	3x3	filters	on	a	
black	and	white	image	(just	one	channel)

Convolutional	layer	with	four	3x3	filters	
on	an	RGB	image.	As	you	can	see,	the	
filters	are	now	cubes,	and	they	are	
applied	on	the	full	depth	of	the	image..
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• To be clear: each filter is convolved with the 
entirety of the 3D input cube, but generates 
a 2D feature map.

• Because we have multiple filters, we end up 
with a 3D output: one 2D feature map per 
filter.

• The feature map dimension can change 
drastically from one conv layer to the next: 
we can enter a layer with a 32x32x16 input 
and exit with a 32x32x128 output if that 
layer has 128 filters.

29



CS109A, PROTOPAPAS, RADER

Why does this make sense?

In image is just a matrix of 
pixels.

Convolving the image with a 
filter produces a feature map 
that highlights the presence of 
a given feature in the image.

30
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In a convolutional layer, we are basically applying multiple 
filters at over the image to extract different features. 

But most importantly, we are learning those filters!

One thing we’re missing: non-linearity. 

32
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Introducing ReLU

The most successful non-linearity for CNNs is the Rectified 
Non-Linear unit (ReLU):

Combats the vanishing gradient problem occurring in 
sigmoids, is easier to compute, generates sparsity (not always 
beneficial)

33
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Convolutional layer so far

• A convolutional layer convolves each of its filters with the 
input.

• Input: a 3D tensor, where the dimensions are Width, Height 
and Channels (or Feature Maps)

• Output: a 3D tensor, with dimensions Width, Height and 
Feature Maps (one for each filter)

• Applies non-linear activation function (usually ReLU) over 
each value of the output.

• Multiple parameters to define: number of filters, size of 
filters, stride, padding, activation function to use, 
regularization.

34
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Building a CNN

A convolutional neural network is built by stacking layers, 
typically of 3 types:

35

Pooling	Layers Fully	connected	
Layers

Convolutional	
Layers
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Building a CNN

A convolutional neural network is built by stacking layers, 
typically of 3 types:

36

Pooling	Layers Fully	connected	
Layers

Convolutional	Layers

I/O

• Input:	3D	cube,	
previous	set	of	
feature	maps

• Output:	3D	cube,	one	
2D	map	per	filter

Action

• Apply	filters	to	
extract	features

• Filters	are	composed	
of	small	kernels,	
learned.

• One	bias	per	filter.
• Apply	activation	

function	on	every	
value	of	feature	map

Parameters

• Number	of	kernels
• Size	of	kernels	(W	

and	H	only,	D	is	
defined	by	input	
cube)

• Activation	function
• Stride
• Padding
• Regularization	type	

and	value
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Building a CNN

A convolutional neural network is built by stacking layers, 
typically of 3 types:

37

Fully	connected	
Layers

Convolutional	
Layers Pooling	Layers
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Fully	connected	
Layers

Convolutional	
Layers

Building a CNN

A convolutional neural network is built by stacking layers, 
typically of 3 types:

38

Pooling	Layers

I/O

• Input:	3D	cube,	
previous	set	of	
feature	maps

• Output:	3D	cube,	one	
2D	map	per	filte,	
reduced	spatial	
dimensions

Action

• Reduce	
dimensionality

• Extract	maximum	of	
average	of	a	region	

• Sliding	window	
approach

Parameters

• Stride
• Size	of	window
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Convolutional	
Layers

Building a CNN

A convolutional neural network is built by stacking layers, 
typically of 3 types:

39

Pooling	Layers Fully	connected	
Layers
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A convolutional neural network is built by stacking layers, 
typically of 3 types:

Pooling	LayersConvolutional	
Layers

Fully	connected	Layers

Building a CNN

40

I/O

• Input:	FLATTENED	3D	
cube,	previous	set	of	
feature	maps

• Output:	3D	cube,	one	
2D	map	per	filter

Action

• Aggregate	
information	from	
final	feature	maps

• Generate	final	
classification

Parameters

• Number	of	nodes
• Activation	function:	

usually	changes	
depending	on	role	of	
layer.	If	aggregating	
info,	use	ReLU.	If	
producing	final	
classification,	use	
Softmax.
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Fully built CNN (VGG)

41
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What do they learn?

• Each CNN layer learns filters of increasing complexity.

• The first layers learn basic feature detection filters: edges, 
corners, etc.

• The middle layers learn filters that detect parts of objects. 
For faces, they might learn to respond to eyes, noses, etc.

• The last layers have higher representations: they learn to 
recognize full objects, in different shapes and positions.

42
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Examples

• I have a convolutional layer with 16 3x3 filters that takes an 
RGB image as input. 
• What else can we define about this layer?

• Activation function

• Stride

• Padding type

• How many parameters does the layer have?

16 x 3 x 3 x 3 + 16 =  448

44

Number	of	
filters

Size	of	
Filters

Number	of	
channels	of	
prev layer

Biases	(one	
per	filter)
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• Let C be a CNN with the following disposition:
• Input: 32x32x3 images

• Conv1: 8 3x3 filters, stride 1, padding=same

• Conv2: 16 5x5 filters, stride 2, padding=same

• Flatten layer

• Dense1: 512 nodes

• Dense2: 4 nodes

• How many parameters does this network have?
(8 x 3 x 3 x 3 + 8) + (16 x 5 x 5 x 8 + 16) + (16 x 16 x 16 x 512 + 512) + (512 x 4 
+ 4)   

45

Examples

Conv1 Conv2 Dense1 Dense2
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3D visualization of networks in action

http://scs.ryerson.ca/~aharley/vis/conv/

https://www.youtube.com/watch?v=3JQ3hYko51Y
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BUILDING YOUR OWN IMAGE CLASSIFIER
Keras,	Tensorflow,	Pytorch?

47
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Machine Learning libraries

Machine Learning is growing, and so are the libraries.

Language that has grown the most in this field: Python.

Popular libraries for machine learning:
• Tensorflow (Google)

• Pytorch (Facebook)

• Keras (initially independent, now part of TF)

• Theano (MILA, University of Montreal)

• Scikit-learn (Started as Google summer project, now backed by 
INRIA)

• Caffe, Caffe2 (Berkeley AI Research)

• MXNet (Amazon)

• CNTK (Microsoft)
48
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Keras

• High-level API built in Python.

• Focused on Neural Networks.

• Runs seamlessly on CPU and GPU.

• Runs on top of Tensorflow, CNTK or Theano.

• Very intuitive and simple to use: building a net, training and 
testing is straightforward.

• Developed with focus on fast experimentation.

49
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Keras Guiding principles

• User friendliness: designed for human beings. Focuses on good user 
experience. Consistent and simple APIs. Clear and actionable feedback 
upon error.

• Modularity. Model is sequence or graph of standalone blocks that can be 
connected to each other with as few restrictions as possible. Layers, 
losses, activations, regularizations, etc. are all modules that can be 
plugged in and out of a model easily.

• Easy extensibility. New modules are simple to add. Abundance of 
examples to adapt your mdel to new ideas.

• Work with Python. No separate models configuration files in a 
declarative format. Models are described in Python code, which is 
compact, easier to debug, and allows for ease of extensibility.

50
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Different ways to build our image classifier

Two ways of building models in Keras: Sequential  or Functional APIs.
• Sequential: 

• Create a model with model = Sequential()

• Add layers one after the other with model.add(layer)

• Simple to understand, but rigid and basic.

• Cannot create complex models that require parallel branches or multipe
input/outputs

• Functional:

• Main concept: A layer instance is callable (same as a model), outputs a tensor

• Connect layers one after the other with next_output = 
Layer(params)(previous_output) 

• Build the final model by joining input an output with model = Model(in, out)

• Keras builds computational graph in the background

• Very flexible, allows for multiple input/outputs, shared layers, residual 
connections, etc.

51
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Compiling and training a model

Once our model is built, we need to compile it. 

Compilation in Keras links the model with its loss function, optimizer and metrics to 
compute.

Simple syntax:

Training a model is similar to Sklearn:

Evaluating and predicting is also simple:

52



EVOLUTION OF CNNS
A	bit	of	history

53
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Initial ideas

• The first piece of research proposing something similar to a 
Convolutional Neural Network was authored by Kunihiko
Fukushima in 1980, and was called the NeoCognitron1.

• Inspired by discoveries on visual cortex of mammals.

• Fukushima applied the NeoCognitron to hand-written character 
recognition.

• End of the 80’s: several papers advancing the field
• Backpropagation published in French by Yann LeCun in 1985 (independently 

discovered by other researchers as well)

• TDNN by Waiber et al., 1989 - Convolutional-like network trained with 
backprop.

• Backpropagation applied to handwritten zip code recognition by LeCun et al., 
1989

54

1	K.	Fukushima.	Neocognitron:	A	self-organizing	neural	network	model	for	a	mechanism	of	pattern	recognition	unaffected	by	shift	in	position.	
Biological	Cybernetics,	36(4):	93-202,	1980.
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LeNet

• November 1998: LeCun publishes one of his most recognized papers 
describing a “modern” CNN architecture for document recognition, 
called LeNet1. 

• Not his first iteration, this was in fact LeNet-5, but this paper is the 
commonly cited publication when talking about LeNet.

55

1	LeCun,	Yann,	et	al.	"Gradient-based	learning	applied	to	document	recognition." Proceedings	of	the	IEEE 86.11	(1998):	2278-2324.
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AlexNet

56

• Developed by Alex Krizhevsky, Ilya Sutskever and 
Geoffrey Hinton at Utoronto in 2012. More than 25000 
citations.

• Destroyed the competition in the 2012 ImageNet Large 
Scale Visual Recognition Challenge. Showed benefits of 
CNNs and kickstarted AI revolution.

• top-5 error of 15.3%, more than 10.8 percentage points 
lower than runner-up.

AlexNet

• Main	contributions:
• Trained	on	ImageNet	with	data	

augmentation
• Increased	depth	of	model,	GPU	

training	(five	to	six	days)
• Smart	optimizer	and	Dropout	layers
• ReLU activation!



CS109A, PROTOPAPAS, RADER

ZFNet

• Introduced by Matthew Zeiler and Rob Fergus from NYU, 
won ILSVRC 2013 with 11.2% error rate. Decreased sizes of 
filters.

• Trained for 12 days.

• Paper presented a visualization technique named 
Deconvolutional Network, which helps to examine different 
feature activations and their relation to the input space.

57
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VGG

• Introduced by Simonyan and Zisserman (Oxford) in 2014

• Simplicity and depth as main points. Used 3x3 filters 
exclusively and 2x2 MaxPool layers with stride 2.

• Showed that two 3x3 filters have an effective receptive field 
of 5x5.

• As spatial size decreases, depth increases.

• Trained for two to three weeks.

• Still used as of today.

58
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GoogLeNet (Inception-v1)

• Introduced by Szegedy et al. (Google), 2014. Winners of ILSVRC 2014.

• Introduces inception module: parallel conv. layers with different filter sizes. 
Motivation: we don’t know which filter size is best – let the network decide. Key 
idea for future archs.

• No fully connected layer at the end. AvgPool instead. 12x fewer params than 
AlexNet.

59

1x1	convs to	
Reduce	number	
of	parameters

Inception	moduleProto	Inception	module
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ResNet

• Presented by He et al. (Microsoft), 2015. Won ILSVRC 2015 in multiple 
categories.

• Main idea: Residual block. Allows for extremely deep networks.

• Authors believe that it is easier to optimize the residual mapping than the 
original one. Furthermore, residual block can decide to “shut itself down” if 
needed.

60

Residual	Block
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ResNet

• Presented by He et al. (Microsoft), 2015. Won ILSVRC 2015 in multiple 
categories.

• Main idea: Residual block. Allows for extremely deep networks.

• Authors believe that it is easier to optimize the residual mapping than the 
original one. Furthermore, residual block can decide to “shut itself down” if 
needed.

61

Residual	Block
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DenseNet

• Proposed by Huang et al., 2016. 
Radical extension of ResNet idea.

• Each block uses every previous 
feature map as input.

• Idea: n computation of redundant 
features. All the previous 
information is available at each 
point.

• Counter-intuitively, it reduces the 
number of parameters needed.

62
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DenseNet

• Proposed by Huang et al., 2016. 
Radical extension of ResNet idea.

• Each block uses every previous 
feature map as input.

• Idea: n computation of redundant 
features. All the previous 
information is available at each 
point.

• Counter-intuitively, it reduces the 
number of parameters needed.

63
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MobileNet

• Published by Howard et al., 2017.

• Extremely efficient network with decent 
accuracy.

• Main concept: depthwise-separable 
convolutions. Convolve each feature maps 
with a kernel, then use a 1x1 convolution to 
aggregate the result.

• This approximates vanilla convolutions 
without having to convolve large kernels 
through channels.

64
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Beyond

• MobileNetV2 (https://arxiv.org/abs/1801.04381) 

• Inception-Resnet, v1 and v2 
(https://arxiv.org/abs/1602.07261)

• Wide-Resnet (https://arxiv.org/abs/1605.07146)

• Xception (https://arxiv.org/abs/1610.02357)

• ResNeXt (https://arxiv.org/pdf/1611.05431)

• ShuffleNet, v1 and v2 (https://arxiv.org/abs/1707.01083)

• Squeeze and Excitation Nets 
(https://arxiv.org/abs/1709.01507 )

65
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The world of image analysis

Image classification is just one task. There are many other 
interesting tasks that use the networks presented here and 
more:

• Object detection and localization

• Image denoising

• Semantic Segmentation

• Saliency prediction

• Captioning

• Style transfer

• …
66
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THANK YOU!
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Let’s now take a look at how to build very simple models in 
practice.

Notebook examples!
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