
CS109A Introduction to Data Science
Pavlos Protopapas and Kevin Rader

Advanced Section #7: 
Decision trees and Ensemble methods

1

Camilo Fosco



CS109A, PROTOPAPAS, RADER

Outline

• Decision trees

• Metrics

• Tree-building algorithms

• Ensemble methods

• Bagging

• Boosting

• Visualizations

• Most common bagging techniques

• Most common boosting techniques

2



DECISION TREES
The backbone of most techniques

3



CS109A, PROTOPAPAS, RADER

What is a decision tree?

- Classification through sequential decisions.

- Similar to human decision making.

- Algorithm decides what path to follow at each step.

- The tree is built out by choosing features and thresholds that 
minimize the error of the prediction product, based on different 
metrics that we’ll explore next.

4



CS109A, PROTOPAPAS, RADER

Metrics for decision tree learning

Gini impurity Index: measures how often a randomly chosen element 
from a subset S would be incorrectly labeled if randomly labeled 
following the label distribution of the current subset.

𝐺𝑖𝑛𝑖 𝑆 = 1 −෍

𝑖=1

𝐽

𝑝𝑖
2

• Measures purity.

• When all elements in S belong to one class (max purity), the sum 
equals one and the gini index is thus zero.

5

Number of classes

Proportion of 
elements of class i

in subset S



CS109A, PROTOPAPAS, RADER

Gini examples:

6

Gini = P(picking green)P(picking label black) + P(picking black)P(picking label green)

= 1 – [ P(picking green)P(picking label green) + P(picking black)P(picking label black) ]

= 1 −
3

7
⋅
3

7
+

4

7
⋅
4

7
= 0.4898

Metrics for decision tree learning

Gini = P(picking green)P(picking label black) + P(picking black)P(picking label green)

= 1 – [ P(picking green)P(picking label green) + P(picking black)P(picking label black) ]

= 1 − 1 ⋅ 1 + 0 ⋅ 0 = 0



CS109A, PROTOPAPAS, RADER

Information Gain (IG): Measures difference in entropy between 
parent node and children given a particular split point.

IG S, a = Hparent S − Hchildren(S|a)

Where H is entropy, defined as:

𝐻 𝑇 = −෍

𝑖

𝑝𝑖 log2 𝑝𝑖

And the 𝑝𝑖 correspond to the fractions of each class present in a child 
node resulting from a split in the tree.

7

Subset S (parent)

Split point

Metrics for decision tree learning

Entropy (parent) Weighted sum of 
entropy (children)



CS109A, PROTOPAPAS, RADER

Misclassification Error (ME): we split the parent node’s subset by 
searching for the lowest possible average misclassification error on 
the child nodes.

𝐼𝐺 𝑝 = 1 − max 𝑝𝑖

• In practice, generally avoided as in some cases, the best possible 
split might not yield error reduction at a given step.

• In those cases, the algorithm finishes and tree is cut short. 

8

Metrics for decision tree learning



CS109A, PROTOPAPAS, RADER

Tree-building algorithms

ID3: Iterative Dichotomiser 3. Developed in the 80s by Ross Quinlan.

• Uses the top-down induction approach described previously.

• Works with the IG metric. 

• At each step, algorithm chooses feature to split on and calculates 
IG for each possible split along that feature.

• Greedy algorithm.

9



CS109A, PROTOPAPAS, RADER

Tree-building algorithms

C4.5: Successor of ID3, also developed by Quinlan (‘93). Main 
improvements over I3D:

• Works with both continuous and discrete features, while ID3 only works 
with discrete values. 

• Handles missing values by using fractional cases (penalizes splits that 
have multiple missing values during training, fractionally assigns the 
datapoint to all possible outcomes).

• Reduces overfitting by pruning, a bottom-up tree reduction technique.

• Accepts weighting of input data.

• Works with multiclass response variables.

10



CS109A, PROTOPAPAS, RADER

Tree-building algorithms

CART: Most popular tree-builder. Introduced by Breiman et al. in 
1984. Usually used with Gini purity metric.

• Main characteristic: builds binary trees.

• Can work with discrete, continuous and categorical values. 

• Handles missing values by using surrogate splits.

• Uses cost-complexity pruning.

• Sklearn uses CART for its trees.

11



CS109A, PROTOPAPAS, RADER

Many more algorithms…

12



CS109A, PROTOPAPAS, RADER

Regression trees

Can be considered a piecewise constant regression 
model.

Prediction is made by averaging values at given 
leaf node.

Two advantages: interpretability and modeling of 
interactions.

• The model’s decisions are easy to track, analyze 
and to convey to other people.

• Can model complex interactions in a tractable 
way, as it subdivides the support and calculates 
averages of responses in that support.

13



CS109A, PROTOPAPAS, RADER

Regression trees

Question: how do we build a regression tree?

Least Squares Criterion (implemented by CART):

1. For each predictor, split subset at each observation (quantitative) or category 
(categorical) and calculate the variance of each split.

2. Average variances, weighted by the number of observations in each split. This 
corresponds to calculating an impurity measure:

𝑄 𝑠𝑝𝑙𝑖𝑡 = ෍

𝑚=1

𝑀
𝑅𝑚
𝑁

෍

𝑦𝑖∈𝑅𝑚

𝑦𝑖 − ҧ𝑐𝑚
2

Where N is the number of elements in the node before splitting, M is the number 
of regions after the split, |𝑅𝑚| is the number of elements in splitted region m, and 
ҧ𝑐𝑚 is the average response in region 𝑅𝑚.

3. Choose split with smaller impurity.

14



CS109A, PROTOPAPAS, RADER

Regression trees - Cons

Two major disadvantages: difficulty to capture simple relationships 
and instability.

• Trees tend to have high variance. Small change in the data can 
produce a very different series of splits.

• Any change at an upper level of the tree is propagated down the 
tree and affects all other splits.

• Large number of splits necessary to accurately capture simple 
models such as linear and additive relationships.

• Lack of smoothness.

15



CS109A, PROTOPAPAS, RADER

Surrogate splits

• When an observation is missing a value for predictor X, it cannot 
get past a node that splits based on this predictor.

• We need surrogate splits: Mimic of original split in a node, but 
using another predictor. It is used in replacement of the original 
split in case a datapoint has missing data.

• To build them, we search for a feature-threshold pair that most 
closely matches the original split.

• “Association”: measure used to select surrogate splits. Depends on 
the probabilities of sending cases to a particular node + how the 
new split is separating observations of each class.

16



CS109A, PROTOPAPAS, RADER

Surrogate splits

• Two main functions:

• They split when the primary splitter is missing, which could never 
happen in the training data, but being ready for future test data 
increases robustness.

• They reveal common patterns among predictors in dataset.

• No guarantee that useful surrogates can be found.

• CART attempts to find at least 5 surrogates per node.

• Number of surrogates usually varies from node to node.

17



CS109A, PROTOPAPAS, RADER

Surrogate splits - example

18

• Imagine situation with multiple features, two of them being 
phone_bill (continuous) and marital_status (categorical)

• Node 1 splits based on phone_bill. Surrogate search might find 
that marital_status = 1 generates a similar distribution of 
observations in left and right node. 

• This condition is then chosen as top surrogate split.

Left child Right child

Phone_bill > 100 649 351

Marital_status = 1 638 362

Left child Right child

Phone_bill > 100 550R, 99G 50R, 301G

Marital_status = 1 510R, 128G 51R, 311G



CS109A, PROTOPAPAS, RADER

Surrogate splits - example

19

• In our example, primary splitter = phone_bill

• We might find that surrogate splits include marital status, 
commute time, age, city of residence.

• Commute time associated with more time on the phone

• Older individuals might be more likely to call vs text

• City variable hard to interpret because we don’t know identity of cities

• Surrogates can help us understand primary splitter.



CS109A, PROTOPAPAS, RADER

Pruning

Reduces the size of decision trees by removing branches that have 
little predictive power. This helps reduce overfitting. Two main types:

• Reduced Error Prunning: Starting at leaves, replace each node 
with its most common class. If accuracy reduction is inferior than a 
given threshold, change is kept.

• Cost Complexity Pruning: remove subtree that minimizes the 
difference of the error of pruning that tree and leaving it as is, 
normalized by the difference in leaves:

𝑒𝑟𝑟 𝑇, 𝑆 − 𝑒𝑟𝑟 𝑇0, 𝑆

𝑙𝑒𝑎𝑣𝑒𝑠(𝑇) − 𝑙𝑒𝑎𝑣𝑒𝑠 𝑇0

20



CS109A, PROTOPAPAS, RADER

Cost Complexity Pruning

• Denote the large tree 𝑇0, and define a subtree T ⊂ 𝑇0 as a tree that 
can be obtained by collapsing any number of its internal nodes.

• We then define the cost-complexity criterion:

𝐶𝛼 𝑇 = 𝐿 𝑇 + 𝛼 𝑇

where L(T) is the loss associated with tree T, |T| is the number of 
terminal nodes in tree T, and α is a tuning parameter that controls the 
tradeoff between the two. 

21



CS109A, PROTOPAPAS, RADER 22

The pruning algorithm, as seen in the lecture:

1. Start with a full tree 𝑇0 (each leaf node is pure)

2. Replace a subtree in 𝑇0 with a leaf node to obtain a pruned tree 𝑇1. This subtree 
should be selected to minimize

𝐸𝑟𝑟𝑜𝑟 𝑇0 − 𝐸𝑟𝑟𝑜𝑟(𝑇1)

𝑇0 − |𝑇1|

3. Iterate this pruning process to obtain 𝑇0, 𝑇1, … , 𝑇𝐿where 𝑇𝐿 is the tree containing 
just the root of 𝑇0

4. Select the optimal tree 𝑇𝑖 by cross validation.

This corresponds to minimizing 𝐶𝛼 𝑇 .



ENSEMBLE METHODS
Assemblers 2: Age of weak learners

23



CS109A, PROTOPAPAS, RADER

What are ensemble methods?

• Combination of weak learners to increase accuracy and reduce 
overfitting.

• Train multiple models with a common objective and fuse their 
outputs. Multiple ways of fusing them, can you think of some?

• Main causes of error in learning: noise, bias, variance. Ensembles 
help reduce those factors. 

• Improves stability of machine learning models. Combination of 
multiple learners reduces variance, especially in the case of 
unstable classifiers.

24



CS109A, PROTOPAPAS, RADER

• Typically, decision trees are used as base learners.

• Ensembles usually retrain learners on subsets of the data.

• Multiple ways to get those subsets:

• Resample original data with replacement: Bagging.

• Resample original data by choosing troublesome points more often: 
Boosting.

• The learners can also be retrained on modified versions of the 
original data (gradient boosting).

25

What are ensemble methods?



CS109A, PROTOPAPAS, RADER

Bagging

• Boostrap aggregating (Bagging): ensemble meta-algorithm 
designed to improve stability of ML models.

• Main idea: 

• resample data to generate a subset S.

• Train a weak learner ො𝑔∗, e.g. tree stumps, on the sampled data. 

• Repeat the process K times. When done, combine the K classifiers into 
one classifier by averaging or maj-voting the outputs:

ො𝑔𝑏𝑎𝑔 ⋅ =
1

𝐾
෍

𝑖=1

𝐾

ො𝑔𝑖
∗(⋅)

ො𝑔𝑏𝑎𝑔 ⋅ = argmax
𝑗

෍

𝑖=1

𝐾

𝕀𝑗= ො𝑔𝑖
∗ ⋅

26

Regression:

Classification: (Majority Vote)

(Average)



CS109A, PROTOPAPAS, RADER

Bagging

• Bagging is generally not recommended when the simple classifier 
shows high bias, as the technique does no bias reduction.

• Variance is strongly diminished.

Question: should we subsample with or without replacement?

Answer: both work. Typically, with replacement is used.  See 
“Observations on Bagging”, Buja et al., 2006* - proves that identical 
results are obtained if:

𝑁 − 1

𝑀𝑤𝑖𝑡ℎ
=

𝑁

𝑀𝑤𝑜
− 1

27
*Buja and Stuetzel, 2006, section 7.

Number of observations

Sample size with 
replacement

Sample size without 
replacement



CS109A, PROTOPAPAS, RADER

Boosting

• Sequential algorithm where at each step, a weak learner is trained 
based on the results of the previous learner.

• Two main types:

• Adaptive Boosting: Reweight datapoints based on performance of last 
weak learner. Focuses on points where previous learner had trouble. 
Example: AdaBoost.

• Gradient Boosting: Train new learner on residuals of overall model. 
Constitutes gradient boosting because approximating the residual and 
adding to the previous result is essentially a form of gradient descent. 
Example: XGBoost.

28



CS109A, PROTOPAPAS, RADER

Gradient Boosting

29



CS109A, PROTOPAPAS, RADER

• Task is to estimate target continuous function F(x). We measure 
goodness of estimation with loss function 𝐿(𝑦, 𝐹 𝑥 ).

• Gradient boosting assumes that:
𝐹 𝑥 = 𝛼0 + 𝛼1ℎ1 𝑥 +⋯+ 𝛼𝑀ℎ𝑀(𝑥)

• Basic Gradient boosting workflow:

1. Initialize 𝐹0 𝑥 = 𝛼0
2. Estimate 𝛼𝑚 and ℎ𝑚 𝑥 such that:

3. Update 𝐹𝑚 𝑥 = 𝐹𝑚−1 𝑥 + 𝛼𝑚ℎ𝑚(𝑥)

4. Repeat from 2, M times.

30

Gradient Boosting

𝐿 𝑦, 𝐹𝑚−1 𝑥 + 𝛼𝑚ℎ𝑚(𝑥) < 𝐿(𝑦, 𝐹 𝑚−1 𝑥 )



CS109A, PROTOPAPAS, RADER 31

Gradient Boosting

𝐿 𝑦, 𝐹𝑚−1 𝑥 + 𝛼𝑚ℎ𝑚(𝑥) < 𝐿(𝑦, 𝐹 𝑚−1 𝑥 )

If we can find a vector 𝑟𝑚 that we can plug in here 
to make this equation true, we can train a basic 
learner ℎ𝑚(𝑥) to predict 𝑟𝑚 from 𝑥!

We are basically searching for a vector that points to the direction that 
reduces our loss… does that sound familiar?

Gradient descent!



CS109A, PROTOPAPAS, RADER

By solving a simple 1D optimization problem, we could also find the 
optimal 𝛼𝑚 for each step, by computing:

𝛼𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾𝐿(𝑦, 𝐹𝑚−1 𝑥 + 𝛾ℎ𝑚(𝑥))

This gives us an updated Gradient Boosting algorithm:

1. Initialize 𝐹0 𝑥 = 𝛼0

2. Compute negative gradient per observation: 𝑟𝑚𝑖
= −

𝜕𝐿 𝑦𝑖 , 𝐹𝑚−1 𝑥𝑖

𝜕𝐹𝑚−1 𝑥𝑖

3. Train base learner ℎ𝑚 𝑥 on the gradients

4. Compute 𝛼𝑚 with line search strategy

5. Update 𝐹𝑚 𝑥 = 𝐹𝑚−1 𝑥 + 𝛼𝑚ℎ𝑚(𝑥)

6. Repeat from 2, M times.

32

Gradient Boosting



CS109A, PROTOPAPAS, RADER

Where do the residuals come in?

If we consider Mean Squared Error as our loss function, the per-
observation gradient is:

•
𝜕𝐿 𝑦𝑖,𝐹𝑚 𝑥𝑖

𝜕𝐹𝑚(𝑥𝑖)
=

𝜕
1

2𝑛
σ𝑖 𝑦𝑖−𝐹𝑚 𝑥𝑖

2

𝜕𝐹𝑚 𝑥𝑖
=

𝜕
1

2
𝑦𝑖−𝐹𝑚 𝑥𝑖

2

𝜕𝐹𝑚 𝑥𝑖
= 𝑦𝑖 − 𝐹𝑚 𝑥𝑖

The derivation we found before works with any loss function.

33

Gradient Boosting



CS109A, PROTOPAPAS, RADER

Gradient Tree Boosting

When dealing with decision trees, we can take the concept further by 
selecting a specific 𝛼𝑚 for each of the tree’s regions. The output of a tree is:

ℎ𝑚 𝑥 = ෍

𝐽𝑚

𝑏𝑗𝑚1𝑅𝑗𝑚(𝑥)

The model update rule becomes:

𝐹𝑚 𝑥 = 𝐹𝑚−1 𝑥 +෍

𝑗=1

𝐽𝑚

𝛼𝑗𝑚𝟏𝑅𝑗𝑚 𝑥

𝛼𝑗𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ෍

𝑥𝑖∈𝑅𝑗𝑚

𝐿 𝑦𝑖 , 𝐹𝑚−1 𝑥𝑖 + 𝛾

34

Number of 
leaves

Disjoint regions 
partitioned by the tree



CS109A, PROTOPAPAS, RADER 35

Let’s look at graphs!

GRAPH TIME

http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html



COMMON BAGGING TECHNIQUES 
Random Forests, of course.

36



CS109A, PROTOPAPAS, RADER

Bagged Trees

• Basics of Bagging applied to the 
letter: resample dataset, train 
trees, combine predictions.

• Can be used in Sklearn with the 
BaggingClassifier() class.

• Pure bagged trees have generally 
worse performance than boosting 
methods, because of high tree 
correlation (lots of similar trees).

37

Question: why are these trees often correlated?



CS109A, PROTOPAPAS, RADER

Random Forests

• Similar to bagged trees but with a twist: we now choose a random 
subset of predictors when defining our trees.

• Question: Do we choose a random subset for each tree, or for each node?

• Random Forests essentially perform bagging over the predictor 
space and build a collection of de-correlated trees.

• This increases the stability of the algorithm and tackles correlation 
problems that arise by a greedy search of the best split at each 
node.

• Adds diversity, reduces variance of total estimator at the cost of an 
equal or higher bias.

38



CS109A, PROTOPAPAS, RADER

Random Forests

Random Forest steps:

1. Construct subset 𝑥1
∗, 𝑦1

∗ ,… , 𝑥𝑛
∗ , 𝑦𝑛

∗ by sampling original training 
set with replacement.

2. Build N tree-structured learners ℎ(𝑥, Θ𝑘), where at each node, M 
predictors at random are selected before finding the best split.

– Gini Criterion.

– No pruning.

3. Combine the predictions (average or majority vote) to get the final 
result.

39

Question: why don’t we need to prune?



COMMON BOOSTING TECHNIQUES
Kaggle killers.

40



CS109A, PROTOPAPAS, RADER

AdaBoost

• AdaBoost is the essential boosting algorithm. It reweights the 
dataset before each new subsampling based on the performance 
of the last classifier.

• Main difference with bagging: SEQUENTIAL.

41



CS109A, PROTOPAPAS, RADER

Instead of resampling, uses training set re-weighting. At each 
iteration, the re-weighting factor is given by:

𝛼𝑚 =
1

2
ln

1 − 𝜖𝑚
𝜖𝑚

Where 𝜖𝑚 is the weighted error of weak classifier ℎ𝑚: 

𝜖𝑚 =
σ𝑦𝑖≠ℎ𝑚 𝑥𝑖

𝑤𝑖
𝑚

σ𝑖=1
𝑁 𝑤

𝑖
𝑚

Letting 𝑤𝑖
1
= 1 and 𝑤𝑖

𝑚
= 𝑒− 𝑦𝑖𝐹𝑚−1 𝑥𝑖 for m>1

42



CS109A, PROTOPAPAS, RADER

It can be shown that AdaBoost can also be described in the gradient 
boosting framework, where the loss being minimized is exponential 
loss:

𝐿 =෍

𝑖

𝑒−𝑦𝑖𝐹 𝑥𝑖

Splitting the loss into correctly and incorrectly classified datapoints 
and differentiating, we can get to the results above.

43



CS109A, PROTOPAPAS, RADER

In general AdaBoost has been known to perform better than SVMs 
with less parameters to tune. Main parameters to set are:

- Weak classifier to use

- Number of boosting rounds

Disadvantages:

- Can be sensitive to noisy data and outliers.

- Must adjust for cost-sensitive or imbalanced problems

- Must be modified for multiclass problems

44



CS109A, PROTOPAPAS, RADER

XGBoost

XGBoost is essentially a very efficient Gradient Boosting Decision Tree 
implementation with some interesting features:
• Regularization: Can use L1 or L2 regularization.

• Handling sparse data: Incorporates a sparsity-aware split finding algorithm to handle different types of 
sparsity patterns in the data.

• Weighted quantile sketch: Uses distributed weighted quantile sketch algorithm to effectively handle 
weighted data.

• Block structure for parallel learning: Makes use of multiple cores on the CPU, possible because of a 
block structure in its system design. Block structure enables the data layout to be reused. 

• Cache awareness: Allocates internal buffers in each thread, where the gradient statistics can be stored.

• Out-of-core computing: Optimizes the available disk space and maximizes its usage when handling 
huge datasets that do not fit into memory.

45



CS109A, PROTOPAPAS, RADER

Three main forms of gradient boosting are supported:

Gradient Boosting algorithm, as we defined above.

Stochastic Gradient Boosting with sub-sampling at the row, column 
and column per split levels.

• Random procedure where we subsample observations and features

Regularized Gradient Boosting with both L1 and L2 regularization.

• We add a regularization term to the loss function that we are 
optimizing: 

𝐿𝑅 𝑦, 𝐹 𝑥 = 𝐿 𝑦, 𝐹 𝑥 + Ω 𝐹

Where Ω 𝐹 = 𝛾𝑇 +
1

2
𝜆 𝑤 2

46

XGBoost

Number of leaves

Leaf weights: prediction of each leaf



CS109A, PROTOPAPAS, RADER

• XGBoost uses second-order approximation to the loss function to 
quickly optimize the following objective:

𝐿 𝑚 =෍

𝑖

𝑙 𝑦𝑖 , 𝐹𝑚−1 𝑥𝑖 + ℎ𝑚 𝑥𝑖 +Ω(ℎ𝑚)

The second order approximation is:

𝐿 𝑚 ≈෍

i=1

n

𝑙 𝑦𝑖 , 𝐹𝑚−1 𝑥𝑖 + 𝑔𝑖ℎ𝑚 𝑥𝑖 +
1

2
𝑘𝑖ℎ𝑚

2 𝑥𝑖 +Ω ℎ𝑚

Removing constant terms:

𝐿 𝑚 ≈෍

i=1

n

𝑔𝑖ℎ𝑚 𝑥𝑖 +
1

2
𝑘𝑖ℎ𝑚

2 𝑥𝑖 +Ω ℎ𝑚

47

XGBoost

First order gradient of 
loss w.r.t F(x)

Second order gradient of 
loss w.r.t F(x)



CS109A, PROTOPAPAS, RADER

This expression is used in XGBoost to define a structure score for each tree. 
Expanding the regularization term, and defining 𝐼𝑗 = {𝑖|𝑞 𝑥𝑖 = 𝑗} as the 

instance set of leaf j, we can compute the optimal weight of leaf j with:

With this, we can calculate the optimal loss value for a given tree structure:

48



CS109A, PROTOPAPAS, RADER

How would we calculate this in practice?

49



CS109A, PROTOPAPAS, RADER

• Remember, we still want to find the tree structure that minimizes 
our loss, which means best score structure. Doing this for all 
possible tree structures is unfeasible.

• A greedy algorithm that starts from a single leaf and iteratively 
adds branches to the tree is used instead.

• Assume that 𝐼𝐿 and 𝐼𝑅 are the instance sets of left and right nodes 
after the split. Letting 𝐼= 𝐼𝐿 ∪ 𝐼𝑅, then the loss reduction after the 
split is given by:

50



CS109A, PROTOPAPAS, RADER

XGBoost adds multiple other important advancements that make it 
state of the art in several industrial applications.

In practice:

- Can take a while to run if you don’t set the n_jobs parameter 
correctly

- Defining the eta parameter (analogous to learning rate) and 
max_depth is crucial to obtain good performance.

- Alpha parameter controls L1 regularization, can be increased on 
high dimensionality problems to increase run time.

51



CS109A, PROTOPAPAS, RADER

General approach to parameter tuning:

• Cross-validate learning rate. 

• Determine the optimum number of trees for this learning rate. XGBoost can 
perform cross-validation at each boosting iteration for this, with the “cv” 
function.

• Tune tree-specific parameters (max_depth, min_child_weight, gamma, 
subsample, colsample_bytree) for chosen learning rate and number of trees.

• Tune regularization parameters (lambda, alpha).

52



CS109A, PROTOPAPAS, RADER

LGBM

• Stands for Light Gradient Boosted 
Machines. It is a library for training GBMs 
developed by Microsoft, and it competes 
with XGBoost.

• Extremely efficient implementation. 

• Usually much faster than XGBoost with low 
hit on accuracy.

• Main contributions are two novel 
techniques to speed up split analysis: 
Gradient based one-side sampling and 
Exclusive Feature Building.

• Leaf-wise tree growth vs level-wise tree 
growth of XGBoost.

53



CS109A, PROTOPAPAS, RADER

Gradient-based one-side sampling (GOSS)

• Normally, no native weight for datapoints, but in can be seen that 
instances with larger gradients (i.e., under-trained instances) will 
contribute more to the information gain metric. 

• LGBM keeps instances with large gradients and only randomly 
drops instances with small gradients when subsampling. 

• They prove that this can lead to a more accurate gain estimation 
than uniformly random sampling, with the same target sampling 
rate, especially when the value of information gain has a large 
range.

54



CS109A, PROTOPAPAS, RADER

Exclusive Feature Bundling (EFB)

• Usually, feature space is quite sparse.

• Specifically, in a sparse feature space, many features are (almost) 
exclusive, i.e., they rarely take nonzero values simultaneously. 
Examples include one-hot encoded-features.

• LGBM bundles those features by reducing the optimal bundling 
problem to a graph coloring problem (by taking features as vertices 
and adding edges for every two features if they are not mutually 
exclusive), and solving it by a greedy algorithm with a constant 
approximation ratio.

55



CS109A, PROTOPAPAS, RADER

CatBoost

• A new library for Gradient Boosting Decision Trees, offering 
appropriate handling of categorical features. 

• Presented as a workshop at NIPS 2017.

• Fast, scalable and high-performance. Outperforms LGBM and 
XGBoost on inference times, and in some datasets, in accuracy as 
well.

• Main idea: deal with categorical variables by using random 
permutations of the dataset and calculating the average label value 
for a given example using the label values of previous examples 
with the same category. 

56



THANK YOU!

57



CS109A, PROTOPAPAS, RADER

Random Forests – Generalization error

In the original RF paper, Breiman shows that an upper bound for RF’s 
generalization error is given by:

𝑃𝐸∗ ≤
ҧ𝜌

𝑠2
1− 𝑠2

Where s is the strength of the set of classifiers ℎ(𝑥, Θ):
𝑠 = 𝐸𝑋,𝑌𝑚𝑟 𝑋, 𝑌

And mr(X,Y) is the margin function for random forests.

Two main components involved in RF generalization error:

• Strength of individual classifiers

• Correlation between them

58


