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Outline

1. Generalized Linear Models (GLMs):
a. Motivation.
b. Linear Regression Model (Recap): jumping-off point
c. Generalize the Linear Model:

i. Generalization of random component (Error Distribution).
ii. Generalization of systematic component (Link Function).

2. Maximum Likelihood Estimation in this General Framework: 
a. Canonical Links.
b. General Links.
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Motivation
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Ordinary Linear Regression (OLS) is a great model … but cannot 
describe all the situations.

OLS assumes:
➢ Normal distributed observations.
➢ Expectation that linearly depends on predictors.

Many real-world observations do not follow these assumptions, e.g.:
➢ Binary data: Bernoulli or Binomial distributions.
➢ Positive data: Exponential or Gamma distributions.
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GLMs formulations: Overview
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Error distribution:
Normal
Poisson
Bernoulli

...more

Regression Model

...more

Exponential  Family 
Distributions

Link Function

Generalized Linear 
Models
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Regression Models

Suppose a dataset with n training points
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In a Regression model we are looking for:

➢    is some fixed but unknown function.
➢    a random error term.
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Linear Regression Model
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The observations are independently distributed about:

A linear predictor

with a Normal distribution. 

Linear Model:
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Linear Regression Model

The conditional on the predictor distribution:
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GLMs formulation

8



CS109A, PROTOPAPAS, RADER

GLMs formulation

This will be a two-step generalization of simple linear regression.
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1. Random Component:

2. Systematic Component:
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Exponential Family of Distributions
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A wide range of distributions that includes a special cases the Normal,

exponential, Gamma, Poisson, Bernoulli, binomial, and many others.

: canonical parameter and is the parameter of interest.

: dispersion parameter and is a scale parameter relative to variance.

: cumulant function and completely characterizes the distribution.

: normalization factor.
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Likelihood and Score function

Likelihood:
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log-likelihood:

easier and numerically 
more stable 

Score function:
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Two General Identities
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     is the called Fisher information matrix.

     denotes the ν moment.
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Some derivatives before the proofs
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First derivative of log-likelihood:

Second derivative of log-likelihood:
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Some useful relations before the proofs
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The ν moment of an arbitrary function:

Since the observations are assumed independent of each other:

For a well defined probability density:
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Proof of Identity I
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Proof:

the regularity condition takes the derivative out of the integral.
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Proof of Identity II
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Proof

1st term:

2nd term:
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Mean & Variance Formulas in the Exponential Family
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   is the cumulant function of the distribution, since it completely determines 
the first two moments.

where primes denote derivatives w.r.t. canonical parameter 
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Some derivatives before the proofs
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Proof of mean formula

19

Proof
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Proof of Variance formula
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Proof
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Normal Distribution: Example
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Probability density in Normal distribution:
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Bernoulli distribution: Example

22

It is a discrete probability distribution of a random binary variable:
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Second step of GLMs formulation: Link Function
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Systematic Component:
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Link Function

A link function            is a one-to-one differentiable transformation that 
transforms the expectation values to be linear with the predictors
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          is called linear predictor.

The link transforms the expectation NOT the observations. 
For instance, for the link

One-to-one function, so we can invert to get 
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Canonical Links
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A Canonical Link makes the linear predictor equal to the canonical parameter

A Canonical Transformation is relative to the cumulant function

So, the cumulant function must be invertible
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Normal and Bernoulli distributions: Examples

We found earlier:
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Hence,

Normal Distribution:

We found earlier:

Hence,

Bernoulli Distribution:
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Data Distribution and Canonical Links
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GLMs: A general framework

We found that linear, logistic and other regression models are 
special cases of the GMLs.
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Working in such a general framework is a great advantage. There is 
general theory that can be applied afterwards in any specific 
distribution and regression model.

For instance, we have the general Likelihood and we can derive to 
general equations that Maximize the Likelihood.
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Maximum Likelihood Estimation (MLE)
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Maximum Likelihood Estimation (MLE)
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Likelihood in the Exponential Family:

Log-likelihood in the Exponential Family:
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log-likelihood is a strictly concave function
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hence, it can be maximized.
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MLE for Canonical Links
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Normal Equations for MLE

Solving Normal Equations we estimate the coefficients
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MLE Examples
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Normal Distribution: Link = Identity

Bernoulli Distribution: Link = Logit
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MLE for General Links

Sometimes we may use non-Canonical links. For instance, for 
algorithmic purposes such in the Bayesian probit regression.
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Generalizing Estimating Equations:
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Summary

• Generalized Linear Models: 
1. Motivation: OLS cannot describe everything. Good jumping-off.
2. Formulation: 
➢ Generalization of Random Component (error distribution).
➢ Generalization of Systematic Component (Link function).

3. Normal & Bernoulli distributions: Examples.

• Maximum Likelihood Estimation (MLE)
1. General Framework: One theory for many regression models.
2. Normal Equations for MLE (Canonical Links).
➢ Linear & Logistic Regression examples.

3. Generalized Estimating Equations (General Links).
35
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Questions ??

Office hours for Adv. Sec.
Monday 6:00-7:30  pm
Tuesday 6:30-8:00 pm
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Advanced Section 5: Generalized Linear Models
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General Equations: Proof
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Using the chain rule:

hence


