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Outline

1. Introduction:
a. Why Dimensionality Reduction?
b. Linear Algebra (Recap).
c. Statistics (Recap).

2. Principal Component Analysis:
a. Foundation.
b. Assumptions & Limitations.
c. Kernel PCA for nonlinear dimensionality reduction.
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Dimensionality Reduction, why?

A process of reducing the number of predictor variables under 
consideration.
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To find a more meaningful basis to express our data filtering 
the noise and revealing the hidden structure.

C. Bishop, Pattern Recognition and Machine 
Learning, Springer (2008).
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A simple example taken by Physics

Consider an ideal spring-mass system oscillating along x. 
Seeking for the pressure Y that spring exerts on the wall. 
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LASSO regression model:

LASSO variable selection:

J. Shlens, A Tutorial on Principal Component 
Analysis, (2003).
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Principal Component Analysis versus LASSO 

LASSO simply selects one of the arbitrary 
directions, scientifically unsatisfactory.

We want to use all the measurements to 
situate the position of mass.

We want to find a lower-dimensional 
manifold of predictors on which data lie.
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LASSO

X
X

✓ Principal Component Analysis (PCA):
A powerful Statistical tool for analyzing  data sets and is 
formulated in the context of Linear Algebra.



Linear Algebra (Recap)
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Symmetric matrices
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Then             is a symmetric matrix.

Symmetric: 

Using that : 

Suppose a design (or data) matrix consists of n observations 
and p predictors, hence:

Similar for 
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Eigenvalues and Eigenvectors
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Suppose a real and symmetric matrix:

Exists a unique set of real eigenvalues: 
and the associate linearly independent eigenvectors:  

such that:
(orthogonal)

(normalized)

➢ Hence, they consist an orthonormal basis.
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Spectrum and Eigen-decomposition
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Eigen-decomposition:

Spectrum:  

Unitary Matrix:  
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Numerical verification of decomposition property
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Real & Positive Eigenvalues: Gram Matrix

● The eigenvalues of             are positive and real numbers: 

➢ Hence, and      are Gram matrices.   

Similar for 
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Same eigenvalues
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Same eigenvalues. 

Transformed eigenvectors: 

● The              and             share the same eigenvalues:
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The sum of eigenvalues of       is equal to its trace
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● Cyclic Property of Trace:

Suppose the matrices:   

● The trace of a Gram matrix is the sum of its eigenvalues.



Statistics (Recap)
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Centered Model Matrix 
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Suppose the model (data) matrix

Centered Model Matrix:

We make the predictors centered (each column has zero expectation) 
by subtracting the sample mean: 



CS109A, PROTOPAPAS, RADER

Sample Covariance Matrix
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Consider the Covariance matrix:

Inspecting the terms:

➢ The diagonal terms are the sample variances:

➢ The non-diagonal terms are the sample covariances:



Principal Components Analysis (PCA)
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PCA
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PCA is a linear transformation that 
transforms data to a new coordinate system.

The data with the greatest variance lie on the 
first axis (first principal component) and so on.

PCA tries to fit an ellipsoid to the data.

J. Jauregui (2012)

PCA reduces the dimensions by throwing away 
the low variance principal components.
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PCA foundation
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Since    is a Gram matrix,       will be a Gram matrix too, hence:

The eigenvector       is called the ith principal component of 

The eigenvalues are sorted in      as:  
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Measure the importance of the principal components
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The total sample variance of the predictors:

The fraction of the total sample variance that corresponds to      :

so, the       indicates the “importance” of the ith principal component.
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Back to spring-mass example
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PCA finds:

Hence, PCA indicates that there may be fewer variables that are 
essentially responsible for the variability of the response.

revealing the one-degree of freedom.
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PCA Dimensionality Reduction
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The Spectrum represents the dimensionality reduction by PCA.
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PCA Dimensionality Reduction
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There is no rule in how many eigenvalues to keep, but it is 
generally clear and left in analyst’s discretion.

C. Bishop, Pattern Recognition and Machine 
Learning, Springer (2008).
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Assumptions of PCA
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Although PCA is a powerful tool for dimension reduction, it is 
based on some strong assumptions.

The assumptions are reasonable, but they must be checked in 
practice before drawing conclusions from PCA.

When PCA assumptions fail, we need to use other Linear or 
Nonlinear dimension reduction methods.
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Mean/Variance are sufficient 
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In applying PCA, we assume that means and covariance matrix 
are sufficient for describing the distributions of the predictors. 

This is true only if the predictors are drawn by a multivariable 
Normal distribution, but approximately works for many situations.

When a predictor is heavily deviate from Normal distribution, an 
appropriate nonlinear transformation may solve this problem.
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High Variance indicates importance
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The eigenvalue       is measures the “importance” of the ith principal 
component.

It is intuitively reasonable, that lower variability components 
describe less the data, but it is not always true.
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Principal Components are orthogonal 
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PCA assumes that the intrinsic dimensions are orthogonal 
allowing us to use linear algebra techniques.

When this assumption fails, we need to assume non-orthogonal 
components which are non compatible with PCA.
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Linear Change of Basis
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PCA assumes that data lie on a lower dimensional linear manifold. 
So, a linear transformation yields an orthonormal basis.

When the data lie on a nonlinear manifold in the predictor 
space, then linear methods are doomed to fail.



CS109A, PROTOPAPAS, RADER

Kernel PCA for Nonlinear Dimensionality Reduction 
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Applying a nonlinear map Φ (called  feature map) on data yields 
PCA kernel:

Centered nonlinear representation:

Apply PCA to the modified Kernel:
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Summary

• Dimensionality Reduction Methods 
1. A process of reducing the number of predictor variables under 

consideration.
2. To find a more meaningful basis to express our data filtering the 

noise and revealing the hidden structure.

• Principal Component Analysis
1. A powerful Statistical tool for analyzing  data sets and is formulated 

in the context of Linear Algebra.
2. Spectral decomposition: We reduce the dimension of predictors by 

reducing the number of principal components and their eigenvalues.
3. PCA is based on strong assumptions that we need to check.
4. Kernel PCA for nonlinear dimensionality reduction.
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Thank you

Office hours for Adv. Sec.
Monday 6:00-7:30  pm
Tuesday 6:30-8:00 pm
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Advanced Section 4: Dimensionality Reduction, PCA 


