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1 Introduction

Regularization is a method that allows as to analyze and perform regression on high-
dimensional data, however, it seems somewhat naive in the following sense. Suppose that
the number predictors p is large, whether or not is relative to the number observations
n. Then, the LASSO estimator, for example, would select some p′ < p predictors with an
appropriate choice of λ. However, it is not at all clear that the chosen p′ predictors are
the "appropriate" variables to consider in the problem. This may be clearer in light of an
example taken by [2].

Example: Consider the spring-mass system depicted in Fig. 1, where, for simplicity,
we assume that the mass is attached to a massless, frictionless spring. The mass is released
a small distance away from equilibrium along the x-axis. Because we assume an ideal
spring that is stretched along x-axis, it is oscillating indefinitely along this direction. By
understanding the physics of the problem, it is clear that there is only one degree of
freedom in the system, which is indicated by the x-axis. We suppose that we do not know
the physics and the equations of motion behind of this experiment and, on the other hand,
we want to determine the motion through observation. For instance, we want to measure
the position of the ball, which is attached to the spring, from three arbitrary angles in
a three dimensional space. This is depicted by placing three cameras A,B,C (denoted
in Fig. 1) with associate measured variables as xA, xB, xC, respectively. In particular, the
variables x j measures the distance in time between the camera i and the mass. Because
of our ignorance on experiment result, we do not even know what are the real x, y, and z
axes, so we choose a new coordinate system consisting of the camera axes. Let us measure
the pressure that the spring exerts on the wall just from observations that are obtained by
the three cameras. We denote this value as Y and conduct LASSO linear regression on this
problem as:

Y = βAxA + βBxB + βCxC (1)

It turns out that the values xB measured by camera B are the closest to the true underlying
degree of freedom (along the x-axis) and thus, the LASSO estimator would select xB and
sets β̂A = β̂C = 0. Scientifically, this is an unsatisfactory conclusion. We would like to be
able to discern the true degree of freedom as the predictor, not simply select one of the
arbitrary directions that we decided to take measurements in. N
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Figure 1: Toy example of an experiment on a spring system, taken from Shlens (2003). [2].

In a similar vein, when we examine a dataset with a number (or dimensions) of
predictors p, we may suspect that the data actually lie on a lower-dimensional manifold.
In the same sense, the three measurements of the previous example were necessary to
situate the ball on a spring but the data had only one true degree of freedom. Thus,
rather than variable selection methods such as LASSO, we may want to consider more
sophisticated techniques for learning the intrinsic dimensionality of the data, a field known
as dimensionality reduction or manifold learning.

2 Preliminaries in Linear Algebra and Statistics

The above example and discussion serve to motivate the introduction of Principal Compo-
nent Analysis (PCA). In this section we are giving a brief overview of linear algebra and
statistics, which have been discussed in the first advanced section and are essential for the
PCA foundation.

2.1 Linear Algebra

For this section, let X denote an arbitrary n × p matrix of real numbers, X ∈ IRn×p. Along
these notes we assume that the reader is familiar with the basic matrix computations that
are discussed in the first advanced section, such as matrix multiplication, transpose, row
reduction, and eigenvalue/eigenvector determination.

Proposition 1.1 For any such matrix X, the matrices XTX and XXT are symmetric.
Proof: To show symmetry of a matrix A it suffices to show that AT = A. Clearly, this holds
in our case, since

(XTX)
T

= XT(XT)T = XTX, (2)

and similarly for XXT. �
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The above proposition, while simple, is crucial due to an attractive property of real,
symmetric matrices, as it is given in the following theorem. Indeed, the following is
often considered as the fundamental theorem of linear algebra and known as the spectral
theorem.

Theorem 1.2 If A is a real, symmetric matrix, then there exists an orthonormal basis of
eigenvectors of A.
In order words, for any such matrix A ∈ IRm×m, we can find a basis {u1, ...,um} such that the
basis is orthonormal. That means that the basis vectors are orthogonal (ui ⊥ u j so uT

i u j = δi j)
and normalized to unity (||ui||2 = 1). Moreover, this basis consists of eigenvectors of A,
so that Aui = λiui for the eigenvalue λi ∈ IR. Alternatively, if we stack the eigenvectors
ui as rows we obtain the orthogonal matrix UT, where UT = U−1, and we can express the
eigen-decomposition of A as

A = UΛUT, (3)

where Λ = diag(λi) is the diagonal matrix of eigenvalues. The proof of the theorem is quite
technical and we state the theorem here without proof. Moreover, there is a considerable
amount of theory involving the set of eigenvalues of A, which is called its spectrum. The
spectrum of a matrix reveals much about its properties, and although we do not delve
into it here, we encourage the reader to refer to the bibliography for further details.

We can, however, discuss one important property of the spectrum for the Gram matrices
XTX and XXT; namely, that the eigenvalues are non-negative as the following preposition
states.

Proposition 1.3 The eigenvalues of XTX and XXT are non-negative reals.
Proof: Suppose λ is an eigenvalue of XTX with associated eigenvector u. Then,

XTXu = λu

uTXTXu = uTλu

(Xu)T(Xu) = λuTu

||Xu||2 = λ||u||2

⇒ λ > 0 (4)

Since both ||Xu||2 and ||u||2 are non-negative, we conclude that λ > 0. Note that a zero
eigenvalues is not acceptable because for λ = 0 the matrix XTX cannot be inverted. The
result for XXT follows from a similar proof. �

In fact, it turns out that the non-zero eigenvalues of these matrices are identical, as the
following proposition shows.

Proposition 1.4 The matrices XXT and XTX share the same nonzero eigenvalues.
Proof: Suppose that λ is a non-zero eigenvalue of XTX with associated eigenvector u.
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Then

XTXu = λu

XXTXu = Xλu

XXT(Xu) = λ(Xu)

XXTũ = λũ (5)

Thus, λ is an eigenvalue of XXT, with associated eigenvector ũ = Xu (rather than u). �

Proposition 1.5 The trace of the gram matrix XTX is equal with the sum of its eigenvalues.
Proof: For the proof of the Proposition 1.5, we first prove the cyclic property of the Trace,
that is, we suppose an m × n matrix B and an n × n matrix C. Then,

Tr (BC) =

m∑
i

(BC)ii =

m∑
i

n∑
j

Bi jC ji

m∑
i

n∑
j

C jiBi j =

n∑
j

(CB) j j = Tr (CB), (6)

where we used the index notation for the trace and for the matrix multiplication. Knowing
this property and by using the eigen-decomposition of Eq. (3), we prove Proposition 1.5:

Tr (XTX) = Tr (UΛUT) = Tr (UTUΛ) = Tr (Λ)

⇒ Tr (XTX) =

p∑
i=1

, (7)

note that the above property holds for any Gram matrix. λi. �

2.2 Statistics

In this section, we return considering X ∈ IRn×p as the model matrix. From this point on,
we assume that the predictors are all centered, which means that for each column X j of X,
we subtract the sample column mean

µ̂ j =
1
n

n∑
i=1

xi j, (8)

so that we are considering the centered model matrix:

X̃ =
(
X1 − µ̂1, ...,Xp − µ̂p

)
. (9)

Note that each column now has expectation zero, so that we can consider the sample
covariance matrix:

S =
1

n − 1
X̃TX̃. (10)

Last Modified: October 17, 2018 4



This is essentially a modified Gram matrix using the centered columns (or predictors) and
scaling by n − 1. One way to understand the origin of its name is to consider each of the
terms in the matrix. The diagonal matrix terms all have the form:

S j j =
1

n − 1

n∑
i=1

(xi j − µ̂ j)2, (11)

whereas the off-diagonal terms have the form:

S jk =
1

n − 1

n∑
i=1

(xi j − µ̂ j)(xik − µ̂k). (12)

Thus, it clear that the diagonal terms S j j yield the sample variances of each of the predictors,
whereas the off-diagonal terms S jk yield the sample covariances.

3 Principal Component Analysis

With the above preliminaries, the actual methodology of PCA is now quite simple. The
main idea is that in order to conduct dimensionality reduction and obtain the irreducible
degrees of freedom inherent in the problem, we would like to remove as much redundancy
in our predictors as possible. The way that PCA defines such redundancy is by using the
correlation (or covariance) between the predictors. For instance, if predictors x j and xk are
highly correlated, it is likely that one holistic predictor may suffice instead.

Proceeding to the mathematics, we first use Proposition 1.1 to note that the sample
covariance matrix S is symmetric and thus, we apply Theorem 1.2 to obtain an orthonor-
mal basis of eigenvectors of S, such that the eigenvalues are ordered λ1 ≥ λ2 ≥ ...λp with
corresponding eigenvectors u1,u2, ...,up. The vector ui is called the ith principal component
of S and λi is a measure of the "variance explained" by that principal component. This is
because the trace of S,

Tr [S] =

p∑
j=1

S j j =
1

n − 1

p∑
j=1

n∑
i=1

(xi j − µ̂ j)2, (13)

can be considered as the "total sample variance" of the predictors, as it sums up the sample
variances of each of the p predictor variables. But the trace of S also equals the sum of its
eigenvalues according to the Proposition 1.5, hence, the quantity

λi∑p
j=1 λ j

=
λi

Tr [S]
(14)

represents, in a heuristic sense, the fraction of the "total sample variance" accounted for
the eigenvector or principal component ui.

In general, it will often be the case that the largest eigenvalues are orders of magnitude
greater than the others, because the data may indeed have fewer degrees of freedom than
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the number of predictors may indicate. In practice, one keeps only the principal compo-
nents with the largest eigenvalues, and discards the rest, thereby reducing the dimension
of the problem, as shown in Fig. 2. Thus, a smaller subset of the eigenvalues being
significantly larger than the others indicates the possibility of dimensionality reduction.
How many components to keep is left to the data analyst’s discretion, but it is generally
clear when dimensionality reduction is possible.

Figure 2: An example of dimensionality reduction by PCA, thresholding the eigenvectors
to keep based on examination of the eigenvalue magnitudes.

Intuitively, the principal components ui denote directions in IRp that are "natural" for
the problem at hand, and are linear combinations of the original coordinates. For example,
in the spring system example, we may have u1 = (0.2, 0.9, 0.4) as the first principal compo-
nent, which may have λ1/

∑
j λ j ' 1 revealing that there is just one degree of freedom as it

represents the x-axis in Fig. 1. Consequently, the possibility of dimensionality reduction
also indicates that there may be fewer but more interpretable variables, represented by
the principal components, that are responsible for the variability of a response.

4 Assumptions of Principal Component Analysis

There are a number of assumptions that were both implicitly and explicitly made in order
to motivate and justify the PCA method that is described in the previous section.

A. Linear change of basis: All of the operations that were used in section 3 are linear
operations. Indeed, PCA consists essentially of a change of basis, from the Euclidean
basis (in which we measure our predictors) to an orthonormal basis of eigenvectors of
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XTX. Thus, PCA assumes that such a linear change of basis is sufficient for identifying
degrees of freedom and conducting dimensionality reduction.

B. Mean/variance is sufficient: In applying the PCA technique to our data, we are only
using the means (for standardizing) and the covariance matrix that are associated
with our predictors. Thus, the method assumes that such statistics are sufficient for
describing the distributions of the predictor variables. This is, in fact, only the case
if the predictors are drawn jointly from a multivariable Normal distribution, but may
be approximately true in other situations. However, when the predictor distributions
heavily violate this sufficiency assumption, one can still conduct PCA but the resulting
components may not be as informative.

C. High variance indicates importance: Another fundamental assumption that we made in
describing PCA procedure is that the eigenvalues λi, which represent the variability in
the data and are associated with the ith principal component, measure the importance
of that component. This is intuitively reasonable, since components corresponding to
low variability likely say little about the data, which is not always true.

D. Principal components are orthogonal: When were conducting PCA, we explicitly sought
orthonormal eigenvectors as our principal components. The assumption that the
"intrinsic dimensions" are orthogonal may not be true. However, this allowed us to
use techniques from linear algebra such as the spectral decomposition and thereby,
simplify our calculations.

Thus, while most of the assumptions appear plausible, they must be checked in practice
before drawing any strong conclusions from PCA. Let us assess which assumptions are
fundamental and which are technical. Assumption A is inherent in PCA, as a matrix-
based method. Unfortunately, it is also one of the most limiting aspects of PCA. If the
data are confined to a subspace, then linear methods will suffice. However, if the data are
on some (nonlinear) manifold in the space, as put forth by the manifold hypothesis, then
linear methods are doomed to fail in general, and we must turn to nonlinear methods (see
Section 6). Assumption B can be problematic, but unlike Assumption A, it can be more
easily verified. For example, if any of the predictors appear to be heavily skewed, then the
first two moments (mean and variance) are likely insufficient to describe the distribution,
and thus PCA may not be very informative. In such a case, a transformation of certain
problematic predictor variables (for example, by taking the logarithm) can be an adequate
solution. Of course, one should ideally examine the joint distribution of the predictors,
but this can be difficult in high-dimensional situations. Finally, Assumptions C and D
are not necessarily data-dependent, but rather method-dependent: that is, we make these
assumptions as a way to understand the data, and they are not intrinsic to the data itself.
Using metrics other than variability and allowing non-orthogonal components are not
inherently nonsensical or antithetic to PCA; they will simply yield different methods and
solutions to the problem of dimensionality reduction.
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5 Multidimensional Scaling and Other Linear Dimension-
ality Reduction Methods

As noted above, PCA is a linear dimensionality reduction method that is based on a certain
objective (maximizing variances and minimizing covariances), and substituting other
metrics to be optimized yield different methods [4]. Rather than maximizing variances,
one may want to instead find lower-dimensional representations of X that preserve the
pairwise distances between the observations. This leads to the method of multidimensional
scaling (MDS).

As usual, suppose that we have n observations {x1, ..., xn} ⊂ IRp , each of which are
p-dimensional. Also, define a distance function between observations di j = d(xi, x j), such
that it is a metric. Namely, it is symmetric (di j = d ji), and has the property that dii = 0 and
di j > 0 for i , j. Often, we will consider the Euclidean distance as our metric, so that
d(xi, x j) = ||xi − x j||

2
2 . One can verify that the Euclidean distance satisfies all properties

necessary to be a metric.
We can the construct the distance matrix D, defined as

D =


0 d12 · · · d1n

d21 0 · · · d2n
...

...
. . .

...
dn1 dn2 · · · 0

 , (15)

where the diagonal terms are zero by definition of the metric. In addition, we can
consider a lower-dimensional representation y1, · · · , yn = g(x1), ..., g(xn) ⊂ IRd for d < p,
and the associated distance matrix. We refer to the original distance matrix as DX and
the distance matrix associated with the lower-dimensional representation as DY; note that
both matrices are of dimension n × n.

One criterion for ensuring that the lower-dimensional representation is faithful to the
original data is to preserve the distances between the observations. Thus, in MDS, one
seeks to find a representation such that

min
g

n∑
i, j=1

(
dX

ij − dY
ij

)2
,

where g is the transformation that yields y.
There are a number of ways one can use this framework for dimensionality reduction,

but here we focus on the Euclidean case. In this situation, the following lemma connects
the distance matrix to the Gram matrix XXT:

Lemma 5.1 The distance matrix D for observations {x1, ..., xn} and Euclidean metric d(xi, x j) =
||xi − x j||

2
2 satisfies

XXT = −
1
2

HDH, (16)
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where H = In − n−111T where 1 is the vector of all ones.
With the lemma Lemma 5.1, we can express the above minimization problem in terms

of inner products as follows:

min
g

n∑
i, j=1

(
xT

i x j − yT
i y j

)2
, (17)

and it can be shown that the solution to this problem is given by Y = Λ1/2VT where V is
the matrix of eigenvectors corresponding to the largest d eigenvalues of XXT , and Λ is
the diagonal matrix of those eigenvalues (and zero otherwise).

However, note from Proposition 1.4 that, in fact, the largest d eigenvalues of XXT are
exactly the largest d eigenvalues of XTX. Thus, despite approaching the problem from
a completely different criterion, MDS actually yields the same dimensionality reduction
as PCA. Thus, it is also a linear dimensionality reduction technique (if we use Euclidean
distance as our metric) and suffers from the same drawbacks and assumptions as PCA.

6 Nonlinear Dimensionality Reduction Techniques

To surmount the linearity assumptions of PCA and MDS, there are, by now, a large number
and variety of nonlinear dimensionality reduction techniques, which are also called manifold
learning methods. We focus on two salient examples of such methods, which are each based
on one of the methods we have discussed.

6.1 Kernel PCA

One obvious extension to PCA that allows for nonlinear dimensionality reduction is to
first apply a nonlinear map Φ, known as a feature map to the data, yielding a nonlinear
representation Φ(X), then applying PCA to this transformed data. Once we transform the
data, we must find the Gram matrix in this transformed space, which we define to be the
kernel:

K = Φ(X)TΦ(X). (18)

Once we have achieved this, we can conduct PCA on this Gram matrix, just taking care to
ensure that the columns have mean zero. This yields the kernel PCA method for nonlinear
dimensionality reduction.

Note that we cannot simply standardize each column as before, since that does not
conform to the transformation above. Instead, we must modify the feature map itself as:

Φ̃(X) = Φ(X) − Ex [Φ(X)] , (19)

and then compute the modified kernel K̃ = Φ̃(X)TΦ̃(X).
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6.2 Isomap

Similarly to the case of kernel PCA, one can extend MDS to the nonlinear setting by using
a non-Euclidean distance metric. One widely-used alternative yields a technique called
Isomap. The exact same MDS objective is minimized as before (minimizing the difference
in pairwise distances between the original points and the transformed representation).
However, we employ a different, particular distance metric d(xi, x j).

To construct this metric, one first constructs the k-nearest neighbors (KNN) graph of
the data. This entails employing the KNN method on the data, and constructing a graph
in which the data points are the nodes, and an undirected edge {i, j} indicates that (xi, x j)
are one of each other’s k-nearest neighbors. Then, one can use a shortest-paths algorithm
(such as Djikstra’s algorithm) to compute the shortest geodesic distance between pairs of
observations. That is, di j = d(xi, x j) indicates the length of the shortest path between xi and
x j in this nearest neighbors graph.

Finally, one can use a standard optimization algorithm or an eigen-decomposition of
the distance matrix DX to find the representations Y. This step is identical to that of MDS,
and it is noted that one can use the number of "large" eigenvalues of DX to determine the
dimensionality of the representation.
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