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We turn to the question of both understanding and justifying various methods for
regularizing statistical models. While many of these methods were introduced in the
context of linear models, they are now effectively used in a wide range of contexts beyond
simple linear modeling, and serve as a cornerstone for doing inference or learning in
high-dimensional contexts.

1 Motivation for regularization

Let us start our discussion by considering the model matrix:

X =


X11 X12 · · · X1p

X11 X12 · · · X1p
...

...
. . .

...
Xn1 Xn2 · · · Xnp


of size n × p, where we have n observations of dimension p.

As our sensors and metrics become more precise, versatile, and omnipresent -i.e., what
has been dubbed the age of “big data” - there is a growing trend not only of larger n (larger
sample sizes are available for our datasets) but also of larger p. In other words, our datasets
increasingly contain more varied covariates, rivaling n. Colinearity between covariates
becomes in turn more likely. This runs counter to the typical assumption in statistics and
data science, namely p << n, the regime under which most inferential methods operate.

There are a number of issues that arise as a result of such considerations. First, from
a mathematical standpoint, a larger value of p, on the order of n, can make objects such as
XTX (also called the Gram matrix, which is crucial for many applications, in particular for
linear estimators) very ill-conditioned. Intuitively, one can imagine that each observation
gives us a “piece of information” about the model, and if the degrees of freedom of the
model (in an informal sense) are as large as the number of observations, it is hard to make
precise statements about the model. This is primarily due to the following proposition.

Proposition 1.1. The least-squares estimator β̂ has

var(β̂) = σ2(XTX)−1
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Proof. Note that the least-squares estimator is given by

β̂ = (XTX)−1XTY

Thus, the variance can be computed as

var(β̂) = (XTX)−1XTvar(Y)
[
(XTX)−1XT

]T

= (XTX)−1XT X
[
(XTX)−1

]T
var(Y)

= (XTX)−1XT X
[
(XTX)T

]−1
var(Y)

= (XTX)−1(XT X)(XTX)−1 var(Y)

= σ2(XTX)−1 (1)

as desired, noting that var(Y) = σ2I.

Thus, an unstable (XTX)−1 implies the instability of the variance of our estimator.
(XTX)−1 becomes unstable when we have multicollinearity (two or more of our predictors
are colinear). If we get to that case, the following equivalent statements are true:

• One or more eigenvalues of XTX are close to zero.

• XTX is nearly singular.

• The condition number κ of XTX is large. (remember that κ(XTX) = λmax
λmin

)

We thus have an ill-behaved problem. the eigenvalue decomposition shows that the
eigenvalues of (XTX)−1 can be extremely large, which will increase the variance of the
estimators dramatically. Furthermore, numerically inverting a nearly singular matrix is
numerically unstable, which adds to the general instability of our coefficients.

When a problem is ill-behaved, small changes in the input generate large changes
in the output. In our case, small changes in our data can yield large changes for the
variability of the estimator, which is problematic.

This statement can be corroborated by the following proposition (related to the per-
turbation theorem).

Proposition 1.2 Consider the following least-squares problem:

minβ‖(X + δX)β − (Y − δY)‖

If β̃ is the solution of the original least squares problem, we can prove that:

‖β − β̃‖

‖β‖
≤

√
κ(XTX)

‖δX‖
‖X‖
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In other words, a small κ(XTX) (or, equivalently, a large minimum eigenvalue) tightens
the bound on how much the coefficients under a perturbation on the data. It is clear then
that a large condition number (which, again, arises under multicollinearity) generates
instability on the regression coefficients. Regularization attempts to mitigate this problem.

Second, from scientist’s point of view, it is an extremely unsatisfying situation for a
statistical analysis to yield a conclusion such as

Y = α1X1 + α2X2 + · · · + α5000X5000

Regardless of how complicated the system or experiment may be, it is impossible for
the human mind to be able to interpret the effect of thousands of predictors. Indeed,
psychologists have found that human beings can typically only hold seven items in
memory at once (though later studies argue for even fewer). Consequently, it is desirable
to be able to derive a smaller model despite the existence of many predictors - a task
that is related to regularization but is known as variable selection. In general, model
parsimony is a goal often sought after, as it helps shed light on the relationship between
the predictors and response variables.

Third, from a data scientist’s viewpoint, it is troubling to have as many predictors as
there are observations, which is related to the mathematical problem named above. For
example, suppose that n = p, and we are considering a linear model

Y = Xβ + ε

Then, if X is full-rank, we can simply invert the matrix to obtain β = X−1Y,which will yield
perfect results on the linear regression task. However, the model has learned nothing, so
has dramatically failed at the implicit task at hand. This can be seen by the fact that such
a model, which is said to be overfit, will typically have no generalization properties; that
is, on unseen data, it will generally perform very poorly. This is evidently an undesirable
scenario.

Thus, we are drawn to methods of regularization, which combat such tendencies by
constraining the space of possible β coefficients (usually by limiting their magnitude).
This prevents the scenario from the above paragraph; if we constrain β sufficiently, it will
not be able to take the perfect precision value β = X−1Y, and thus will (hopefully) be led
to a value in which learning happens.

2 Deriving the Ridge Estimator

The ridge estimator was proposed as an ad hoc fix to the above instability issues by Hoerl
and Kennard (1970) 1. From this point onward, we will generally assume that the model
matrix is standardized, with column means set to zero and sample variances set to one.
One of the signs that the matrix (XTX)−1 may be unstable (or super-collinear) is if the
eigenvalues of the XTX are close to zero. This is because by the spectral decomposition,

XTX = QΛQ−1

1Hoerl, A. E., and R. W. Kennard (1970). "Ridge Regression: Biased Estimation for Nonorthogonal
Problems." Technometrics 12 (1): 55-67.
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and so the inverse is
(XTX)−1 = QΛ−1Q−1

where Λ−1 is simply the diagonal matrix of eigenvalues k−1
j for j = 1, . . . , p. Thus, if some

κ j ≈ 0, then (XTX)−1 becomes very unstable (see a-section 1 for more details).
The fix proposed by the ridge regression method is to simply replace XTX by

XTX + λIp

for λ > 0 and Ip being the p-dimensional identity matrix. This artificially inflates the
eigenvalues of XTX by λ, making it less susceptible to the instability problem above.

Note that the resulting estimator, which we will denote as β̂r, is defined by

β̂R = (XTX + λIp)−1XTY = (Ip + λ(XTX)−1)−1β̂ (2.1)

where the β̂ on the right is the regular least-squares estimator.

Example 2.2. To get some feel for how the β̂R behaves, let us consider the simple
one-dimensional case; then

X = (x1, . . . , xn)

is simply a column vector of observations. Let us suppose we have normalized the
covariates, so that ‖X‖22 = 1. Then the ridge estimator is

β̂R =
β̂

1 + λ

Thus, we can see how increasing values of λ shrink the least-squares estimate further and
further. Interestingly, we can also see that no matter what the value of λ is, β̂R , 0 as
long as β̂ , 0. This explains why the ridge regression method does not perform variable
selection; it does not make any coefficient go to zero, but rather shrinks them uniformly.

After the fact, statisticians realized that this ad hoc method is equivalent to regularizing
the least-squares problem using an L2 norm. That is, we can solve the ridge regression
problem

min
β∈Rp
‖Y − Xβ‖22 + λ‖β‖22 (2.3)

In other words, we want to minimize the least-squares problem as before (the first
term) while also ensuring that the L2 norm of the coefficients ‖β‖2 remains small as well.
Thus, the optimization must tradeoff the least-squares minimization with the minimiza-
tion of the L2 norm.

Theorem 2.4. The solution of the ridge regression problem (Eq. 2.3) is precisely the ridge estima-
tor (Eq. 2.1).
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Proof. As in the least-squares problem, we can write the above in matrix form as

(Y − Xβ)T(Y − Xβ) + λβTβ = YTY − 2YTXβ + βT(XTX)β + λβTβ

Taking matrix derivatives, we find that the first-order condition is

2 (XTX)β − 2XTY + 2λβ = 0⇒ (XTX + λIp)β̂R = XTY

which yields the desired estimator.
Thus, we have arrived at the regularized regression problem in (Eq. 2.3) by considering

an ad hoc method of inflating eigenvalues. From an optimization perspective, the problem
in (Eq. 2.3) is also equivalent to the constrained optimization problem

min
‖β‖22≤κ

‖Y − Xβ‖22 (2.5)

for some κ > 0. Thus, from this perspective, we are simply doing least-squares optimiza-
tion, except under the constraint that the magnitude of the coefficients ‖β‖2 be smaller than
a maximum value κ that we are willing to allow. Of course, there is an inverse relationship
between λ and κ; constraining smaller values of ‖β‖2 (decreasing κ) is equivalent to more
harshly regularizing the least-squares problem (increasing λ). Both the minimization and
the penalization problem yield the exact same β̂ when κ = ‖β̂∗(λ)‖, where β̂∗(λ) is the
optimal estimator from the penalized problem with regularization factor λ.

Finally, it is interesting to note that there is always a value of λ for which the ridge
regression problem (Eq. 2.3) yields an estimator (Eq. 2.1) that has strictly lower mean-
squared error than the least-squares estimator, which we state here without proof. The
proof is given in Hoerl and Kennard (1970).

Theorem 2.6. There always exists λ > 0 such that

E[‖β̂R − β‖
2
2] < E[‖β̂ − β‖22]

That is, regardless of Y and X, there exists a value of λ for which the ridge regression estimator
performs strictly better than the least-squares estimator in terms of mean-squared error.

Note that this result and the following discussion concerns the mean-squared error in
estimating the coefficients (that is, inference), not performance in terms of prediction. This
theorem is interesting since the least-squares estimator is unbiased:

E[β̂ − β] = 0

This can easily be derived, noting that

E[β̂] = (XTX)−1XTE[Y] = (XTX)−1XTXβ = β

Recalling the linear model Y = Xβ + ε and assuming that ε has mean zero, which is
generally the case. On the other hand, the ridge estimator is biased. Using (Eq. 2.1), we
find that

E[β̂R] = (Ip + λ(XTX)−1)−1β , β
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Thus, the fact that the mean-squared error of the ridge estimator is lower than that of the
least-squares estimator implies that the variance of the ridge estimator must more than
make up for the increase in bias. This is a tradeoff that is increasingly the case in statistics
and machine learning; by relinquishing an unbiased estimator, we can try to obtain biased
estimators that have sufficiently low variance to keep the mean-squared error low. This
has become known as the bias-variance tradeoff in statistics and machine learning.

3 Deriving the LASSO Estimator

Allowing for biased estimators opens up a whole variety of different estimators and
procedures for generating them. This also formally allows for the use of regularization
techniques, which generally introduce some bias in the estimation, with the benefit of
reducing variance. An obvious relative to ridge regression is to replace the L2 norm by
the L1 norm as follows:

min
β∈Rp
‖Y − Xβ‖22 + λ‖β‖1

where ‖β‖1 =
∑p

j=1 |β j| is the L1 norm of the coefficients 1. Again, from an optimization
view, this is equivalent to the constrained optimization problem,

min
‖β‖1≤κ

‖Y − Xβ‖22

Indeed, this latter formulation was how the LASSO estimator was first proposed in Tib-
shirani (1996)2.

Example 3.1. Let us again consider a simpler example to gain some intuition about the
properties of the LASSO estimator. A slightly more complex but similar example to the
one-dimensional case above is when the model matrix is orthonormal; that is,

XTX = Ip

In this case, we have that
β̂ = (XTX)−1XTY = XTY

and we can derive the exact solution to the LASSO to be

β̂L, j = sign(β̂ j)[|β̂ j| − λ]+

where [x]+ = x if x > 0 and is 0 otherwise, and β̂L denotes the LASSO estimator. In this
case, the ridge estimator is

β̂R, j =
β̂ j

1 + λ
2Note that the error in the estimation is still given in L2; that is, we still minimize the squared error.

Minimizing the absolute error (using the L1 norm for the error term as well) is known as least absolute
deviation regression.

3Tibshirani, R. "Regression Shrinkage and Selection via the Lasso." JRSS B 58 (1): 267-288.
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as in the one-dimensional case.

Proof. For the ridge estimator, note that we have

β̂R = (Ip + λ(XTX)−1)−1β̂ = [(1 + λ)Ip]−1β̂ = (1 + λ)−1β̂

which yields the estimator above.
For the LASSO estimator, we can again take the same matrix derivatives to find that

the first-order condition is
XTY = (XTX)β̂L + λ sign(β̂L)

By multiplying both sides by (XTX)−1 = Ip, we find that

β̂ = β̂L + λ sign(β̂L)

which, in terms of the components, are the equations

β̂L, j = β̂ j − λ sign(β̂L, j)

Now we solve this by considering the sign of β̂L, j. If it is positive, then we have β̂L, j =

β̂ j − λ > 0; if it is negative, we have β̂L, j = β̂ j + λ < 0. In either case, we must have that
the sign of β̂ j must be the same as the sign of β̂L, j, since λ > 0. Moreover, we can express
x = |x| sign(x) . Thus, we have

β̂L, j = β̂ j − λ sign(β̂ j) = sign(β̂ j)[|β̂ j| − λ]+

as desired.

Note that the form of the estimators reveals much about their properties. As we
discussed above, the ridge estimator components β̂R, j are shrunk versions of β̂ j, but are
strictly nonzero. On the other hand, the LASSO estimator components can very much be
zero, if β̂ j ≤ λ. That is, if we choose λ large enough such that certain components of the
least-squares estimator β̂ are smaller than λ, then we will be setting those components to
zero (in the case of an orthonormal model matrix).

4 Geometry of Estimators and Their Properties

Note that the above example was given in the case of an orthonormal model matrix, for
which XTX = Ip. This begs the question of whether the properties discussed above hold
in more general settings. In particular, we noted that such regularization techniques are
often desirable in the case of unstable XTX, where the eigenvalues become nearly zero.
This is clearly a large departure from the unit matrix situation when X is orthonormal.

The above properties do in fact hold in general. Namely, the ridge estimator shrinks
but does not generally zero out any of the coefficients, whereas the LASSO estimator does
for appropriate values of λ, the regularization parameter. One intuition follows from
Figure 1. The figure considers a two-dimensional case (p = 2), in which each of the axes
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Figure 1: A comparison of the estimators from LASSO (left) and ridge (right) regression.
2D representation of the loss surface stemming from the residual sum of squares and the
constraints.

represent β1, β2; that is, the plane represents the parameter space. The shaded portion
depicts the part of the parameter space that satisfies the constraints ‖β‖ ≤ κ, for the norm
being L1 or L2 respectively, known as the feasible region. The ellipses depict typical level
curves of the error term ‖Y −Xβ‖22. The dot at the center of the ellipses represents the true
parameter β.

Intuitively, note that the error is zero at β, and increases quadratically outward as β̂
moves farther away from β. However, we are indifferent to where exactly on the level
curve we are; the optimization cost (or error) is exactly the same at any point on the same
level curve. Thus, our goal is to find the point that is within the shaded area (satisfying
the norm constraint) that is on the level curve with the smallest error.

It should be clear from the geometry that this will happen at the point where one of the
level curves is precisely tangent to the edge of the feasible region. In the case of LASSO,
this tends to occur at one of the axes, as shown in the figure (though it is possible that it
does not). This implies that some of the coefficients are zero; in the example shown in the
figure, β̂L,1 = 0 whereas β̂L,2 = κ.

On the other hand, the ridge regression estimates will generally happen within the
quadrant of the true value (rather than on the axes). This explains why the coefficients of
the ridge estimator are generally nonzero, though they may be small in magnitude. For
example, we see that in the figure, β̂R,1 is quite small relative to β̂R,2, but not strictly zero.

The behavior of Ridge and LASSO coefficients as λ increases is portrayed in Figure 2.
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Figure 2: Evolution of the coefficients of a 5 dimensional random regression problem as
the regularization factor lambda (here alpha) increases. As can be seen, Ridge does not
truly nullify the parameters, while LASSO decreases them linearly until they are set to
zero.

5 Bayesian Interpretations of Ridge Regression and LASSO

In addition to the regularization and constrained optimization perspectives, it turns out
that both ridge and LASSO regression have a very natural interpretation from a Bayesian
viewpoint. While we emphasize that the estimators were not derived in this manner
originally, the Bayesian interpretation, developed later, provides good intuition for the
two regularization methods.

Recall that the linear regression problem models the responses Y as a function of the
model matrix X via the linear predictor Xβ, with noise ε. Typically, we assume Normal
errors, namely ε ∼ N(0, σ2In) . That is, each error term is independently distributed
according to a Normal distribution. Thus, instead of the typical Y = Xβ + ε formulation,
we can instead view this as putting a distribution on Y as

Y|β ∼ N(Xβ, σ2In) (5.1)

That is, if we knew the parameters or coefficients β, then the distribution of Y is Normal
with the linear predictor Xβ as the mean.4

From a Bayesian perspective, it is natural to consider distributions over β, both before
and after conditioning on the data. These are the prior and posterior distri- butions of β,
respectively. The prior is generally left to the statistician’s discretion, and it turns out that
there are two priors for the coefficients that lead to the ridge and LASSO estimators as the
maximum a posteriori (MAP) estimators.

Theorem 5.2. Consider the linear regression model above (5.1), and the MAP estimator

β̂M ≡ arg max
β

p(β|Y)

4In all regression contexts, we assume that the model matrix X is fixed and known, so we do not explicitly
condition on it.
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where p(β|Y) denotes the posterior distribution of β given the data Y.

(a) If the prior is
β ∼ N(0, σ2/λ)

then β̂M = β̂R.

(b) If the prior is
β ∼ L(0, 2σ2/λ)

where L(a, b) denotes the Laplace distribution with location a and scale b, then β̂M = β̂L.

Proof. We first note that by Bayes’ rule, we can write

p(β|Y) =
p(Y|β)p(β)

p(Y)
∝ p(Y|β)p(β)

where p(Y) is the marginal distribution of Y, which does not involve β, and p(β) is the
prior distribution. Thus, by the monotonicity of the logarithm,

arg max
β

p(β|Y) = arg max
β

p(Y|β)p(β) = arg max
β

[log p(Y|β) + log p(β)]

Since we are assuming the model in (Eq. 5.1), we have

log p(Y|β) ∝ −(2σ2)−1
‖Y − Xβ‖22

again dropping any constants that do not involve β. Multiplying the entire optimization
problem by −1, we turn a maximization into a minimization, and obtain

arg max
β

p(β|Y) = arg min
β

[
(2σ2)−1

‖Y − Xβ‖22 − log p(β)
]

Thus, if β ∼ N(0, τ2) , then we have

arg min
β

[
(2σ2)−1

‖Y − Xβ‖22 + (2τ2)−1
‖β‖22

]
and setting τ2 = σ2/λ yields the result. Similarly, for β ∼ L(0, b) , we obtain

arg min
β

[
(2σ2)−1

‖Y − Xβ‖22 + b−1
‖β‖1

]
and again setting b = 2σ2/λ completes the proof.

Just as the consideration of biased estimators opened up the possibility of using var-
ious regularization techniques, the Bayesian perspective also inspires a wide variety of
regression models, some of which are not immediate from the regularization perspective.
For example, while both of the Normal and Laplace distributions are symmetric about
their means, this need not be the case. We can consider asymmetric Laplace (or other)
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distributions if we have prior evidence to suggest that, for example, β1 should be positive.
In this case, we may want to have a small scale parameter for β1 < 0, but a larger one for
β1 > 0. In general, while the Normal and Laplace distributions have found most common
use for Bayesian linear regression, any other prior distribution can be used in principle,
depending on the problem at hand.

Moreover, the regularized regression models correspond only to the MAP estimators
under the Normal or Laplace priors, as discussed above. As we will discuss later in the
class, Bayesian analysis generally goes beyond simple point estimators, such as the MAP
estimator, and instead involves computation and analysis of the entire pos- terior distri-
bution of β. Thus, "regularizing" using a Bayesian prior yields more precise statements
and information about the parameter of interest, compared with least-squares estimation
using a regularized model.

Defining the regularization parameter. There is another important advantage that
comes from the Bayesian formulation: the ability to set the regularization parameter
directly from the data, without doing cross-validation. If we consider a model in which
our coefficients stem from a distribution parametrized by lambda, we can marginalize out
the coefficients to obtain a distribution of Y conditioned solely on lambda, Y|λ. We can then
use the Maximum Likelihood Estimation technique to find the most likely regularization
factor given our data. This method is generally called Empirical Bayes, and in the context
of regression, it is generally referred to as Evidence Procedure:

Consider the following model:

p(Y|β) ∼ N(Xβ, σ2I)

p(β) ∼ N(0,A−1)

Where:
A−1 = τ2I

τ2 =

[
σ2

λ1
,
σ2

λ2
, . . . ,

σ2

λp

]
The marginal likelihood can be computed as follows:

p(Y|τ2) =

∫
∞

−∞

N(Y; Xβ, σ2I)N(β; 0,A−1)dβ

= N(Y; 0, σ2I + XA−1XT)

= (2π)−N/2
|Cτ|

−1/2 exp
(
−

1
2

YTC−1
τ Y

)
(2)

With Cτ = σ−2I + XA−1XT.

We take into account that we’re dealing with a normal-normal model, which easily
defines the first integral. Now, we want the value of τ2 that maximizes this likelihood. As
this is equivalent to minimizing the negative log-likelihood, we have:
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τ2
EB = arg min

τ
log |Cτ| + YTC−1

τ Y

This can be easily minimized with any gradient descent algorithm or similar, which
will yield the optimal value of lambda given our data. Note that this lambda will not
necessarily be the lambda found by cross-validation, as here we are maximizing a data
likelihood instead of comparing scores over held-out validation sets.

We can also easily obtain optimal coefficient parameters from here, and a formula
is available in chapter 13, p. 464 of Murphy’s “Machine Learning – A Probabilistic
Perspective”.

One practical advantage of this procedure is that it can easily allow for different
regularization factors per covariates. As can be seen, we never explicitly required the
lambdas from Cτ to be equal. Setting this constrained gets us back to Ridge. We can,
however, potentially infer different values for every coefficient and thus increase the
effectiveness of our regularization.

6 Combining Ridge and LASSO: Elastic Net Regulariza-
tion

Unfortunately, both of the L1 and L2 regularizations discussed above are not without
problems.5 First, we have already discussed the main problem of ridge regression. Though
it can effectively tradeoff bias with variance to yield an estimator with lower mean-
squared error, it always keeps all of the predictors in the model, and thus never yields a
parsimonious model.

On the other hand, though the LASSO estimator does often yield a sparse represen-
tation, it has a number of limitations. When p > n, which is the case we are interested
in most when considering regularization methods, it has been shown that LASSO can
only select at most n predictors. That is, given a sample size of n and a large number of
predictors p > n, LASSO will only yield up to n predictors with nonzero coefficients, even
if there were more in the true model.

In addition, both empirical evidence and theoretical analysis (Efron et al., 2004) show
that when there are a number of highly-correlated predictors, then the LASSO estimator
indifferently selects one among them and discards the rest. This can be highly problematic
in practice; for example, if a group of clustered genes jointly predict for a disease but are
correlated, it would be scientifically invalid to randomly select one of these genes and
ignore the rest.

As a result of these considerations, Zou and Hastie (2005) developed the elastic net
estimator, which combines both the LASSO (L1) and ridge (L2) penalties. The elastic net
problem can be formulated as

min
β∈Rp
‖Y − Xβ‖22 + λ1‖β‖1 + λ2‖β‖

2
2 (6.1)

5Zou, H., and T. Hastie (2005). "Regularization and Variable Selection via the Elastic Net." JRSSB 67 (2):
301-320.
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or, equivalently, as
min
β∈Rp
‖Y − Xβ‖22 + λ[α‖β‖1 + (1 − α)‖β‖22]

where we define λ = λ1 + λ2 and α =
λ1

λ1 + λ2
. Thus, elastic net evidently com- bines both

the L1 and L2 penalties into one regularization term, which is a convex combination of the
two.

As in the case of ridge regression and LASSO, this is equivalent to a constrained
optimization problem, which can be written as

min
α‖β‖1+(l−α)‖β‖22≤t

‖Y − Xβ‖22 (6.2)

where α ∈ [0, 1] is a fixed hyperparameter. In particular, note that ridge regression and
LASSO are special cases of the elastic net, with α = 0 or α = 1, respectively.

What makes the elastic net both interesting and effective is that it combines not just the
penalties, but also the benefits of each regularization method. The elastic net generally
yields an estimator β̂E that is both sparse as in the LASSO estimator and shrunk as in the
ridge estimator. This is made clear in the following theorem.

Theorem 6.3. Let β̂E be the elastic net estimator that solves (6.1) for given Y and X, and
hyperparameters λ1, λ2. Construct the augmented problem

Y∗ ≡
(

Y
0

)
∈ Rn+p

X∗ = (1 + λ2)−1/2

(
X
λ1/2

2 I

)
∈ R(n+p)×p

and define γ ≡ λ1/(1 + λ2)1/2 and the augmented β∗ = (1 + λ2)1/2β. Then, the elastic net problem
can be written as

β̂∗ = arg min
β∗∈Rp
‖Y∗ − X∗β∗‖22 + γ‖β∗‖1 (6.4)

and the elastic net estimator satisfies

β̂E = (1 + λ2)−1/2β̂∗ (6.5)

Proof. Some matrix calculations can show that the problems are equivalent. Note that

‖Y∗ − X∗β∗‖22 = ‖Y − Xβ‖22 + λ2‖β‖
2
2

and similarly γ‖β∗‖1 = λ1‖β‖1. Thus, the problem is in fact identical to the elastic net
problem in (Eq. 6.1).

In other words, the theorem states that the elastic net problem can be reformulated
as a LASSO problem on augmented data. This augmented formulation, while seemingly
trivial, does provide a number of insights into the behavior and possibilities of the elastic
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net estimator. First, note that since the sample size of X∗ is n + p > p, the elastic net
estimator can actually select all p predictors, unlike the LASSO estimator. On the other
hand, the fact that β̂E is simply a shrunk version of β̂∗ indicates that the elastic net estimator
does perform variable selection in the sense of LASSO, yielding a sparse representation.
Thus, the elastic net estimator overcomes the primary difficulties faced by the LASSO and
ridge estimators separately.
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