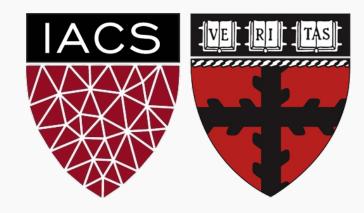
Advanced Section #1: Linear Algebra and Hypothesis Testing

Will Claybaugh

CS109A Introduction to Data Science Pavlos Protopapas and Kevin Rader



WARNING

This deck uses animations to focus attention and break apart complex concepts.

Either watch the section video or read the deck in Slide Show mode.

Today's topics: Linear Algebra (Math 21b, 8 weeks) Maximum Likelihood Estimation (Stat 111/211, 4 weeks) Hypothesis Testing (Stat 111/211, 4 weeks) Our time limit: <u>90 minutes</u>

- We will move fast
- You are only expected to catch the big ideas
- Much of the deck is intended as notes
- I will give you the TL;DR of each slide
- We will recap the big ideas at the end of each section

- We'll work together
- I owe you this knowledge
- Come debt collect at OHs if I don't do my job today
- Let's do this :)

LINEAR (THE HIGHLIGHTS) ALGEBRA

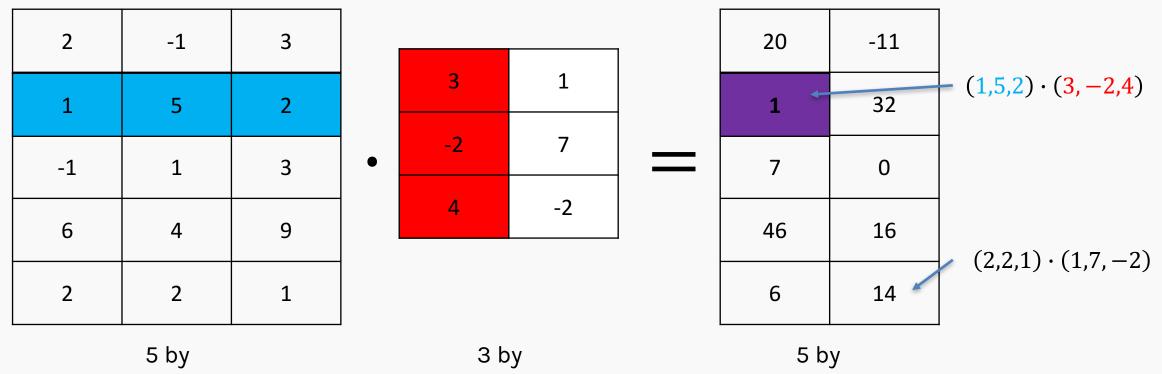
What does a dot product mean?

 $(1,5,2) \cdot (3,-2,4) = 1 \cdot (3) + 5 \cdot (-2) + 2 \cdot (4)$

- Weighted sum: We weight the entries of one vector by the entries of the other
 - Either vector can be seen as weights
 - Pick whichever is more convenient in your context
- **Measure of Length**: A vector dotted with itself gives the squared distance from (0,0,0) to the given point
 - $(1,5,2) \cdot (1,5,2) = 1 \cdot (1) + 5 \cdot (5) + 2 \cdot (2) = (1-0)^2 + (5-0)^2 + (2-0)^2 = 28$
 - (1,5,2) thus has length $\sqrt{28}$
- **Measure of orthogonality**: For vectors of fixed length, $a \cdot b$ is biggest when a and b point are in the same direction, and zero when they are at a 90° angle
 - Making a vector longer (multiplying all entries by c) scales the dot product by the same amount

Question: how could we get a true measure of orthogonality (one that ignores length?)

Dot Product for Matrices



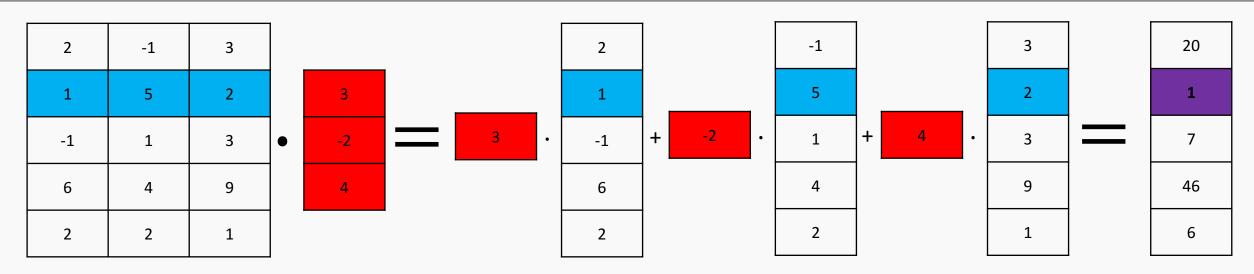
Matrix multiplication is a bunch² of dot products

- In fact, it is every possible dot product, nicely organized
- Matrices being multiplied must have the shapes $n, m \cdot m, p$ and the result is of size n, p

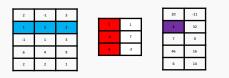
2

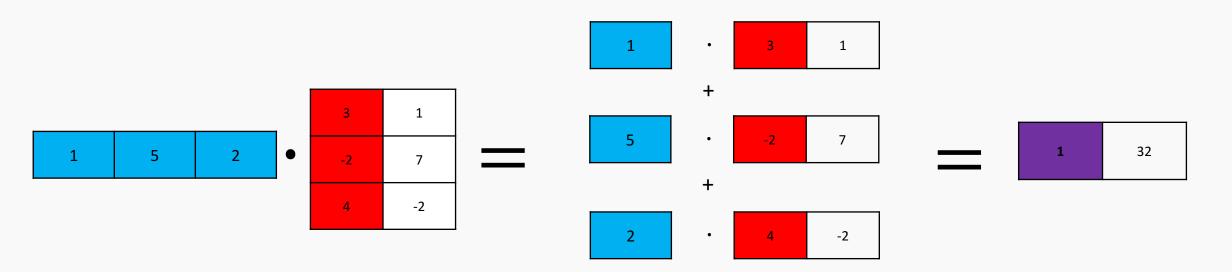
• (the middle dimensions have to match, and then drop out)

Column by Column



- Since matrix multiplication is a dot product, we can think of it as a weighted sum
 - We weight each column as specified, and sum them together
 - This produces the first column of the output
 - The second column of the output combines the same columns under different weights
- Rows?



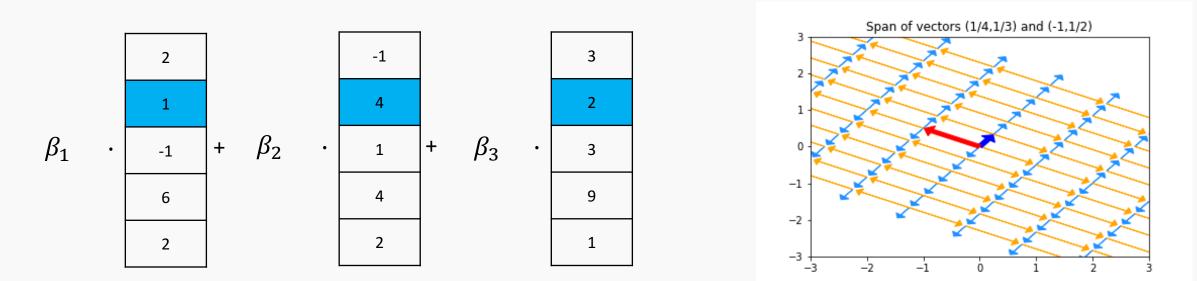


• Apply a row of A as weights on the rows B to get a row of output

LINEAR (TI ALGEBRA

(THE HIGHLIGHTS)

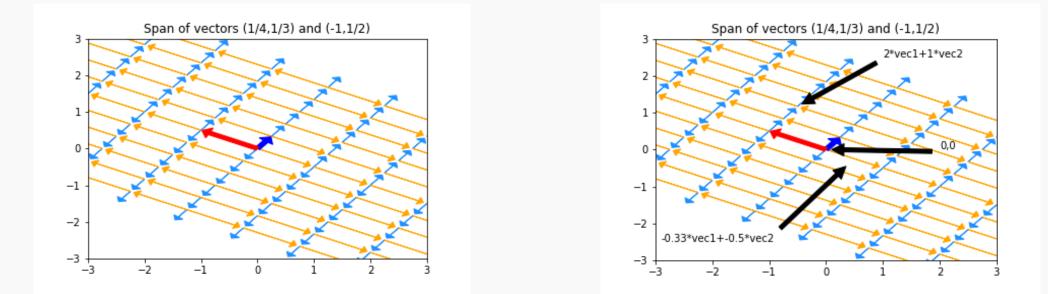
Span and Column Space



- **Span**: every possible linear combination of some vectors
 - If vectors are the columns of a matrix call it the **column space** of that matrix
 - If vectors are the rows of a matrix it is the **row space** of that matrix
- Q: what is the span of {(-2,3), (5,1)}? What is the span of {(1,2,3), (-2,-4,-6), (1,1,1)}

LINEAR ALGEBRA

(THE HIGHLIGHTS)



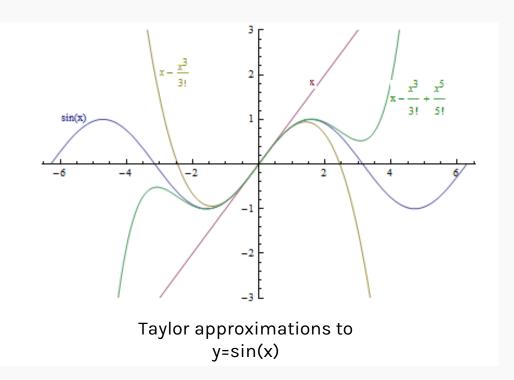
- Given a space, we'll often want to come up with a set of vectors that span it
- If we give a <u>minimal</u> set of vectors, we've found a **basis** for that space
- <u>A basis is a coordinate system for a space</u>
 - Any element in the space is a weighted sum of the basis elements
 - Each element has exactly one representation in the basis
- The same space can be viewed in any number of bases pick a good

one

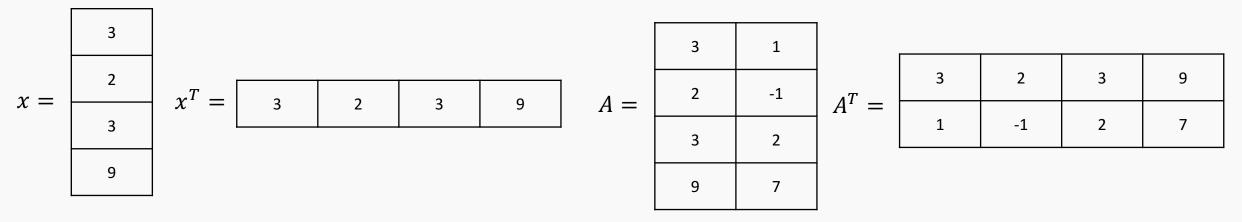
CS109A, Protopapas, Rader

Function Bases

- Bases can be quite abstract:
 - Taylor polynomials express any analytic function in the infinite basis $(1, x, x^2, x^3, ...)$
 - The Fourier transform expresses many functions in a basis built on sines and cosines
 - Radial Basis Functions express functions in yet another basis
- In all cases, we get an 'address' for a particular function
 - In the Taylor basis, sin(x) =۲ $(0,1,0,\frac{1}{6},0,\frac{1}{120},\dots)$
- Bases become super important in feature ۲ engineering
 - Y may depend on some transformation of x, but we only have x itself
 - We can include features $(1, x, x^2, x^3, ...)$ to approximate



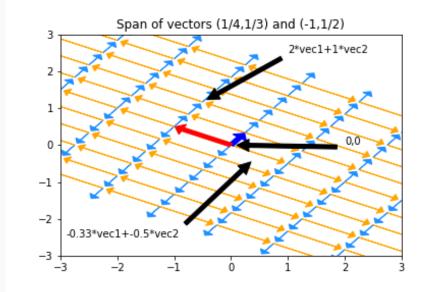
LINEAR (THE HIGHLIGHTS)



- Transposes switch columns and rows. Written A^T
- Better dot product notation: $a \cdot b$ is often expressed as $a^T b$
- Interpreting: The matrix multiplilcation *AB* is rows of A dotted with columns of B
 - $A^T B$ is columns of A dotted with columns of B
 - AB^T is rows of A dotted with rows of B
- Transposes (sort of) distribute over multiplication and addition:

$$(AB)^{T} = B^{T}A^{T}$$
 $(A+B)^{T} = A^{T} + B^{T}$ $(A^{T})^{T} = A$

- Algebraically, $AA^{-1} = A^{-1}A = 1$
- Geometrically, A^{-1} writes an arbitrary point b in the coordinate system provided by the columns of A
 - Proof (read this later):
 - Consider Ax = b. We're trying to find weights x that combine A's columns to make b
 - Solution $x = A^{-1}b$ means that when A^{-1} • multiplies a vector we get that vector's coordinates in A's basis
- Matrix inverses exist iff columns of the matrix form a basis
 - 1 Million other equivalents to invertibility: lacksquare**Invertible Matrix Theorem** CS109A, PROTOPAPAS, RADER



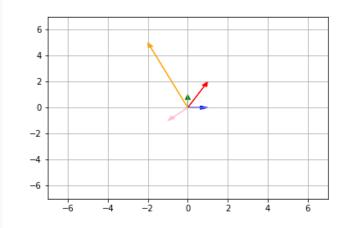
How do we write (-2,1) in this basis? Just multiply A^{-1} by (-2,1)

LINEAR (THE HIGHLIGHTS)

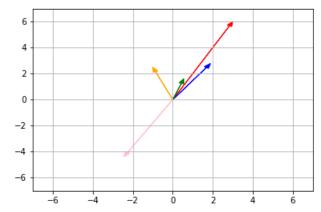
Eigenvalues

- Sometimes, multiplying a vector by a matrix just scales the vector
 - The red vector's length triples
 - The orange vector's length halves
 - All other vectors point in new directions
- The vectors that simply stretch are called egienvectors. The amount they stretch is their eigenvalue
 - Anything along the given axis is an eigenvector; Here, (-2,5) is an eigenvector so (-4,10) is too
 - We often pick the version with length 1
- When they exist, eigenvectors/eigenvalues can be used to understand what a matrix does

Original vectors:



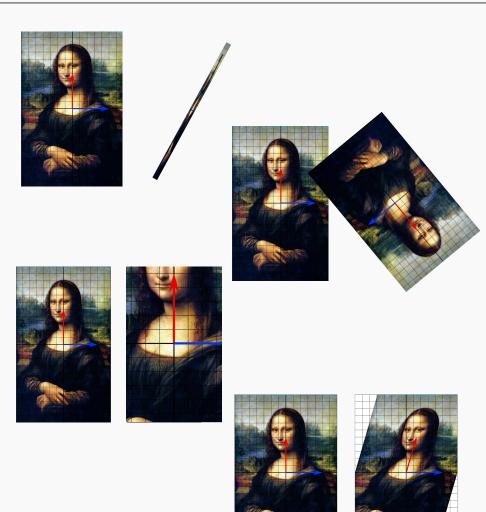
After multiplying by 2x2 matrix A:



Interpreting Eigenthings

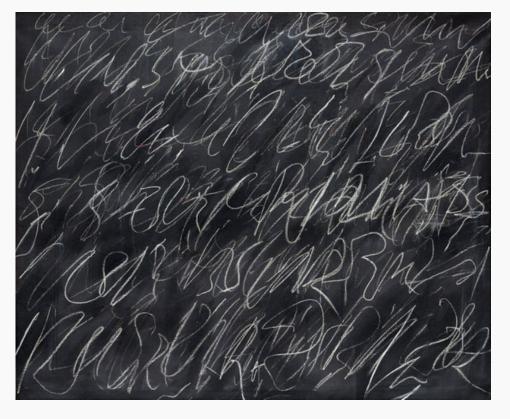
Warnings and Examples:

- Eigenvalues/Eigenvectors only apply to <u>square</u> matrices
- Eigenvalues may be 0 (indicating some axis is removed entirely)
- Eigenvalues may be complex numbers (indicating the matrix applies a rotation)
- Eigenvalues may be repeat, with one eigenvector per repetition (the matrix may scales some n-dimension subspace)
- Eigenvalues may repeat, with some eigenvectors missing (shears)
- <u>If</u> we have a full set of eigenvectors, we know everything about the given matrix S, and S = QDQ⁻¹
 - Q's columns are eigenvectors, D is diagonal matrix of eigenvalues



Calculating Eigenvalues

- Eigenvalues can be found by:
 - A computer program
- But what if we need to do it on a blackboard?
 - The definition $Ax = \lambda x$
 - This says that for special vectors x, multiplying by the matrix A is the same as just scaling by λ (x is then an eigenvector matching eigenvalue λ)
 - The equation $det(A \lambda I_n) = 0$
 - *I_n* is the n by n identity matrix of size n by n. In effect, we subtract lambda from the diagonal of A
 - Determinants are tedious to write out, but
- Eigenvectors producting kolonomeigen values be found by solving $(A \lambda I_n)x = 0$ for x be solved to find eigenvalues

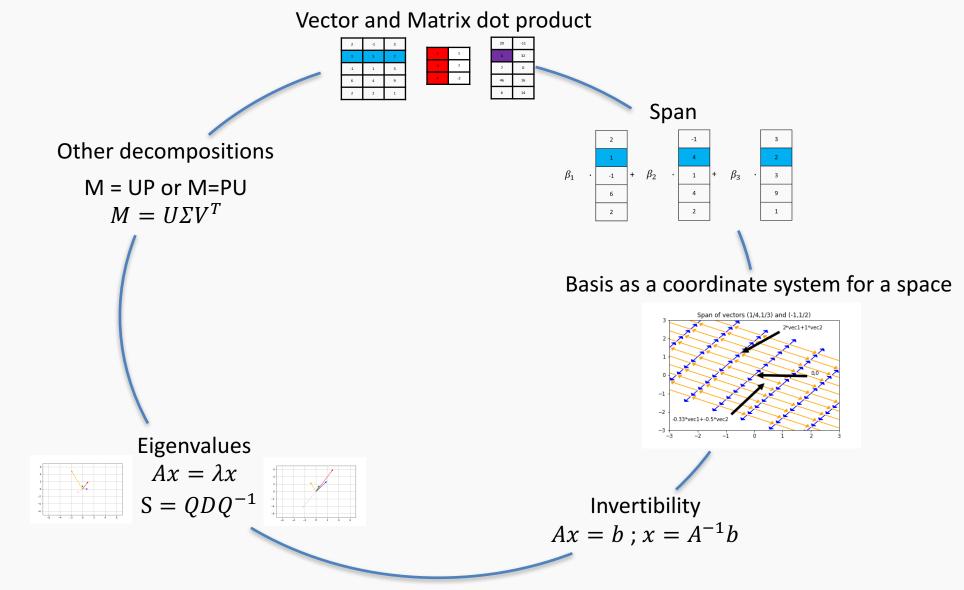


LINEAR Matrix Decomposition ALGEBRA

(THE HIGHLIGHTS)

- **Eigenvalue Decomposition**: <u>Some square</u> matrices can be decomposed into scalings along particular axes
 - Symbolically: S = QDQ⁻¹; D diagonal matrix of eigenvalues; Q made up of eigenvectors, but possibly wild (unless S was symmetric; then Q is orthonormal)
- **Polar Decomposition**: Every matrix M can be expressed as a rotation (which may introduce or remove dimensions) and a stretch
 - Symbolically: M = UP or M=PU; P positive semi-definite, U's columns orthonormal
- **Singular Value Decomposition**: Every matrix M can be decomposed into a rotation in the original space, a scaling, and a rotation in the final space
 - Symbolically: $M = U\Sigma V^T$; U and V orthonormal, Σ diagonal (though not square)

Where we've been



- Simplify $(A^TB)^T$. What is in position 1,4? What does it mean if that value is large?
- What are the eigenvectors of A^2 ? What are the eigenvalues?
- What does it mean when an entry of $A^T A = 0$?
- What about all the facts about inverses and dot products I've forgotten since undergrad? [<u>Matrix Cookbook</u>] [<u>Linear Algebra Formulas</u>]

LINEAR ALGEBRA

(SUMMARY)

- Matrix multiplication: every dot product between rows of A and columns of B
 - Important special case: a matrix times a vector is a weighted sum of the matrix columns
- **Dot products** measure similarity between two vectors: 0 is extremely un-alike, bigger is pointing in the same direction and/or longer
 - Alternatively, a dot product is a weighted sum
- **Bases**: a coordinate system for some space. Everything in the space has a unique address
- Matrix Factorization: all matrices are rotations and stretches. We can decompose 'rotation and stretch' in different ways
 - Sometimes, re-writing a matrix into factors helps us with algebra
- Matrix Inverses don't always exist. The 'stretch' part may collapse a dimension.
 M⁻¹ can be thought of as the matrix that expresses a given point in terms of columns of M
- Span and Row/Column Space: every weighted sum of given vectors
- Linear (In)Dependence is just "can some vector in the collection be represented as a weighted sum of the others" if not, vectors are Linearly Independent

LINEAR REGRESSION

AFTER A BREAK

Review and Practice: Linear Regression

• In linear regression, we're trying to write our response data y as a linear function of our [augmented] features X

$$\begin{aligned} response &= \beta_1 feature_1 + \beta_2 feature_2 + \beta_3 feature_3 + \dots \\ y &= X\beta \end{aligned}$$

• Our response isn't actually a linear function of our features, so we instead find betas that produce a column \hat{y} that is as close as possible to y (in Euclidean distance)

$$\min_{\beta} \sqrt{(y - \hat{y})^T (y - \hat{y})} = \min_{\beta} \sqrt{(y - X\beta)^T (y - X\beta)}$$

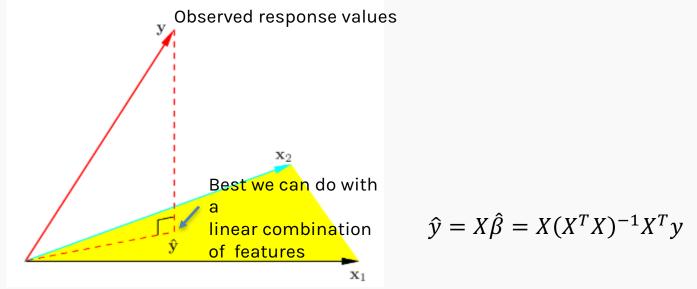
- Goal: find that the optimal $\beta = (X^T X)^{-1} X^T y$
- Steps:
 - 1. Drop the sqrt [why is that legal?]
 - 2. Distribute the transpose
 - 3. Distribute/FOIL all terms
 - 4. Take the derivative with respect to β (Matrix Cookbook (69) and (81): derivative of $\beta^T a$ is a^T , ...)
 - 5. Simplify and solve for beta CS109A, PROTOPAPAS, RADER

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

• The best possible betas, $\hat{\beta} = (X^T X)^{-1} X^T y$ can be viewed in two parts:

- Numerator (*X^T y*): columns of X dotted with (the) column of y; how related are the feature vectors and y?
- Denominator (*X^TX*): columns of X dotted with columns of X; how related are the different features?
- If the variables have mean zero, "how related" is literally "correlation"
- Roughly, our solution assigns big values to features that predict y, but punishes features that are similar to (combinations of) other features
- Bad things happen if $X^T X$ is uninvertible (or nearly so)

Interpreting LR: Geometry



- The only points that CAN be expressed as $X\beta$ are those in the span/column space of X.
 - By minimizing distance, we're finding the point in the column space that is closest to the actual y vector
- The point $X\hat{\beta}$ is the projection of the observed y values onto the things linear regression can express
- Warnings:
 - Adding more columns (features) can only make the span bigger and the fit better
 - If some features are very similar, results will be unstable

STATISTICS

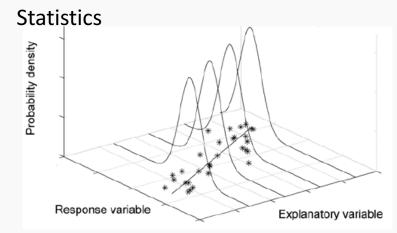
Linear Regression

ML to Statistics

- What we've done so far is the Machine Learning style of modeling:
 - Specify a loss function [Squared error] and a model format [y=Xβ]
 - Find the settings that minimize the loss function

- Statistics adds more assumptions and gets back richer results
 - Adds assumptions about where the data came from
 - We can ask "What about other beta values? On a different day, might we get that result instead?"
 - Statistics can answer yes/no via our assumptions about where the data come from

Machine Learning loss loss -5×10^7 -1×10^8 -400 β_1 200 400 200 β_2 -200 -200 β_2 -200-20



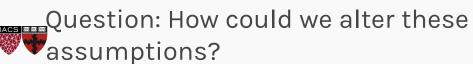
Statistical Assumptions

What are Statistics' assumptions about the linear regression data?

- The observed X values simply are.
- The observed y come from a *Normal(mu(x), sigma)* distribution, mu(x) is linear, and each y is drawn independently from the others
 - For all observations i: $y_i \sim N(x_i\beta, \sigma^2)$
 - Equivalently, column y $y \sim N_{mv}(X\beta, \sigma^2 I_n)$

Why these assumptions?

- Any story about how the X data came to be is problem-dependent
- Makes the problem solvable using 1800s era tools



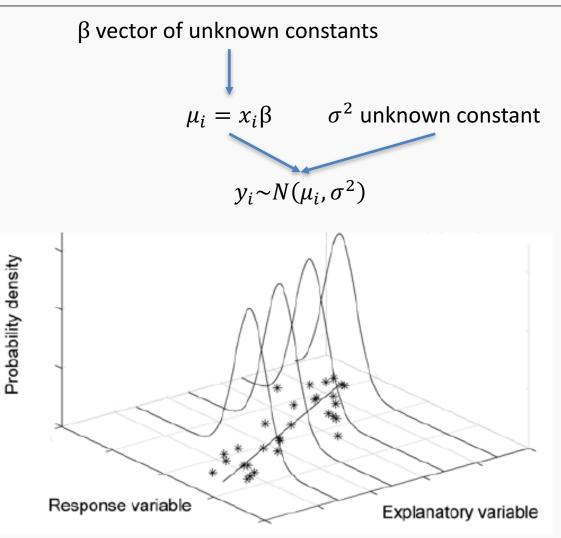


Image from: http://bolt.mph.ufl.edu/6050-6052/unit-4b/module-15/

Maximum Likelihood: the other ML

• We need to guess at the unknown values (β and σ^2)

Maximum Likelihood

- Rule: Guess whatever values of the unknowns make the observed data as probable as possible
 - As a loss function, we feel pain when the data surprise the model
- Only works if we have a likelihood function
 - Likelihood maps (dataset) -> (probability of seeing that dataset); uses parameter values (e.g. β and σ^2) in the calculation
 - Actually maximizing can be hard
- But, Maximum Likelihood can be shown to be a very good guessing strategy, especially with lots of observations (see Stat 111 or 211)

Maximum Likelihood: the other ML

- Likelihood (Probability of seeing data y, given parameters X, β , and σ^2):

$$P(Y = y | X, \beta, \sigma^2) = N(X\beta, \sigma^2 I_n) = \frac{1}{\sqrt{2\pi |\sigma^2 I_n|}} e^{-\frac{1}{2}(y - X\beta)^T (\sigma^2 I_n)^{-1} (y - X\beta)}$$

- Since X is constant, we're maximizing by choosing the vector β and scalar σ^2
- Finding optimal β quickly reduces to the least squares problem we just saw: $\min_{\beta} (y - X\beta)^T (y - X\beta)$
- Optimal $\sigma^2 = \frac{\text{residuals under the optimal }\beta}{(\text{number of observations number of features})}$

- We actually get the joint distribution of the betas: $\beta_{MLE} \sim N(\beta_{True}, \sigma^2 (X^T X)^{-1})$
- HW investigates the variance term: how well we can learn each beta, and whether one is linked to another
 - It depends on X!
 - It doesn't depend on y! (If our assumptions are correct
- Lets us attach error bars to our estimates, e.g. $\beta_1 = 3 \pm .2$

• Main question: What can we do to our X matrix to

- We can add assumptions about where the data came from and get richer statements from our model
- A Likelihood is a function that tells us how likely any given dataset is. Plug in data, get a probability
- The MLE finds the parameter settings that make our data as likely as possible
- Finding the MLE parameter values can be hard, sometimes possible via calculus, often requires computer code

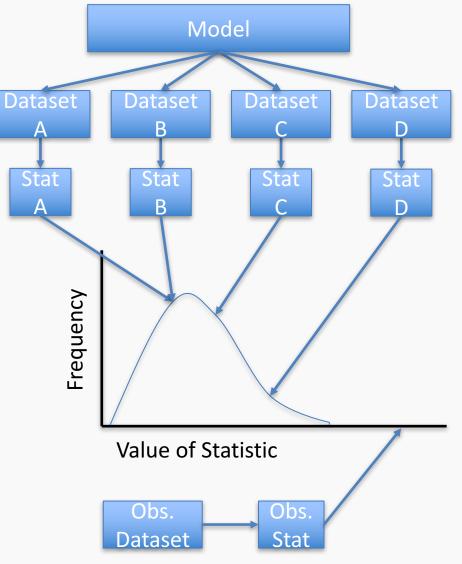
STATISTICS: HYPOTHESIS TESTING

OR: WHAT PARAMETERS EXPLAIN THE DATA

- It's impossible to prove a model is correct
 - In fact, there are many correct models
 - Can you prove increasing a parameter by .0000001% is incorrect?
- We can only rule models out.
- The great tragedy is that you have been taught to rule out just ONE model, and then quit

Model Rejection

- Important: a 'model' is a (probabilistic) story about how the data came to be, complete with specified values of every parameter
 - The model produces many possible datasets
 - We only have one observed dataset
- How can we tell if a model is wrong?
 - If the model is unlikely to reproduce the aspects of the data that we care about, it has to go
 - Therefore, we have some real-number summary of the dataset (a 'statistic') by which we'll compare model-generated datasets and our observed dataset
 - If the statistics produced by the model are clearly different than the one from the real



Recap: How to understand any test

- Any model test specifies:
 - 1. A (probabilistic) data generating process
 - 2. A summary we'll use to compress a dataset
 - 3. A rule for comparing the observed and the simulated summaries
- Example: t-test
 - The y data are generated via the estimated line/plane, plus Normal(0,sigma) noise,

EXCEPT a particular coefficient is actually zero!

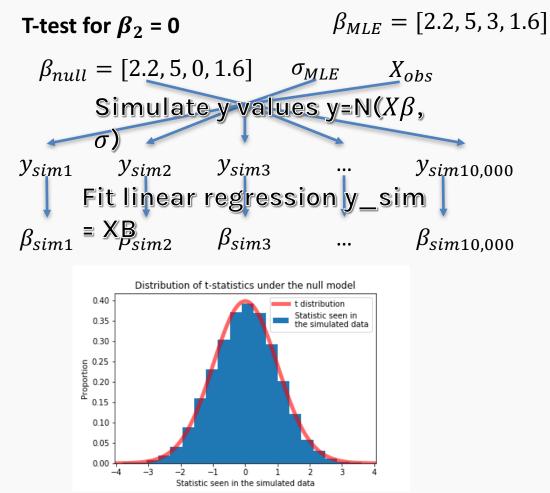
2. The coefficient we'd calculate for that dataset (minus 0), over the SE of the coefficient

t statistic = $\frac{\beta_{Simulated} - 0}{\widehat{SE}(\beta_{0bserved})}$

 Declare the model bad if the observed result is in the top/bottom α% of simulated results (commonly top/bottom 5%)

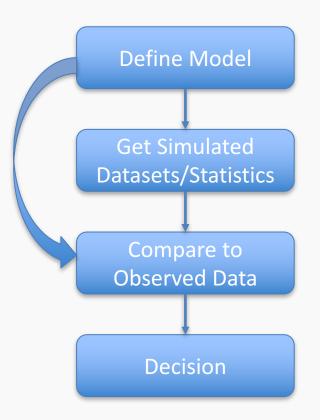
(Jargon: the null hypothesis) (Jargon: a statistic) Walkthrough:

- We set a particular beta we care about to zero (call these betas β_{null})
- We simulate 10,000 new datasets using β_{null} as truth
- In each of the 10,000 datasets, fit a regression against X and plot the values of the β we care about (the one we set to zero)
 - The plotting the t statistic in each simulation is a little prettier
- The t statistic calculated from the observed data was 17.8. Do we think the proposed model generated our data
- the proposed model generated our data?
 One more thing: Amazingly, 'Student' knew what results we'd get from the simulation



The Value of Assumptions

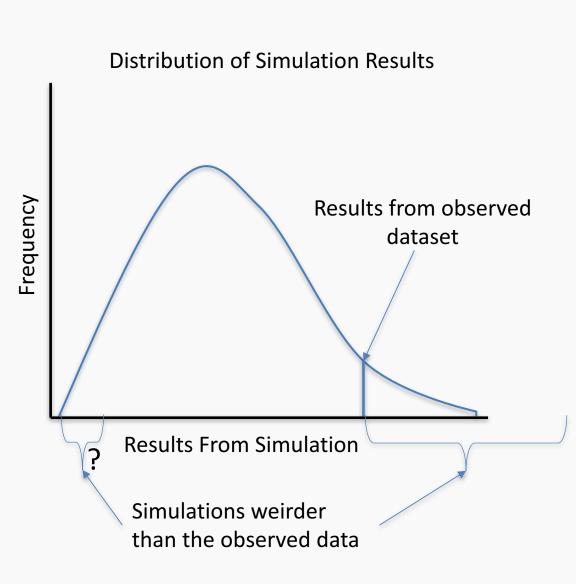
- Student's clever set-up lets us skip the simulation
- In fact, all classical tests are built around working out what distribution the results will follow, without simulating
 - Student's work lets us take infinite samples at almost no cost
- These shortcuts were *vital* before computers, and are still important today
 - Even so, via simulation we're freer to test and reject more diverse models and use wilder summaries
 - However, the summaries and rules we choose still require thought: some are *much* better than others

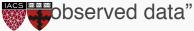


p-values

- Hypothesis (model) testing leads to comparing a distribution against a point
- A natural way to summarize: report what percentage of results are more extreme than the observed data
 - Basically, could the model frequently produce data that looks like ours?
- This is the p value: p=.031 means that your observed data is in the top 3.1% of weird results under this model+statistic
 - There is some ambiguity about what 'weird' should mean

Jargon: p values are "The probability, assuming the null model is exactly true, of seeing a value of [your statistic] as extreme or more extreme than what was seen in the



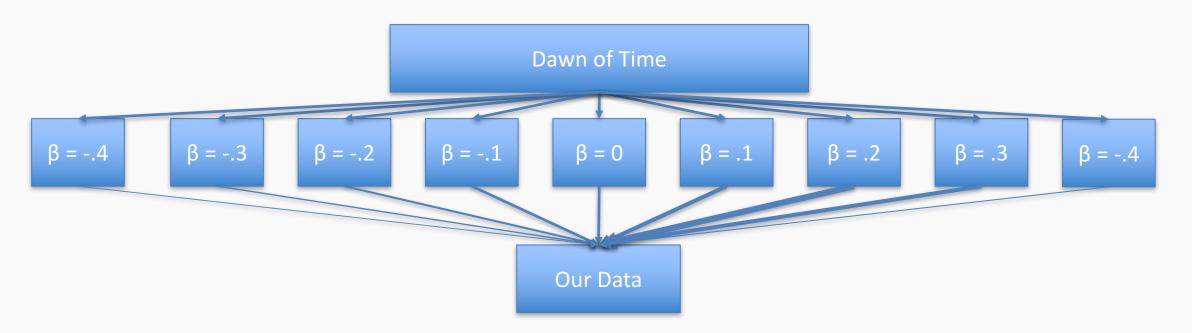


- p values are only one possible measure of the evidence against a model
- Rejecting a model when p<threshold is only one possible decision rule
 - Get a book on Decision Theory for more
- Even if the null model is exactly true, 5% of the time, we'll get a dataset with p<.05
 - p<.05 doesn't prove the null model is wrong
 - It does mean that anyone who wants to believe in the null must explain with why something unlikely happened

- We can't rule models in; we can only rule them out
- We rule models out when the data they produce is different from the observed data
 - We pick a particular candidate (null) model
 - A statistic summarizes the simulated and observed datasets
 - We compare the statistic on the observed data to the simulated or theoretical distribution of statistics the null produces
 - We rule out the null if the observed data doesn't seem to come from the model
- A p value summarizes the level of evidence against a particular null
 - "The observed data are in the top 1% of results produced by this model... do you really think we hit those odds?"

STATISTICS: HYPOTHESIS TESTING

CONFIDENCE INTERVALS AND COMPOSITE HYPOTHESES



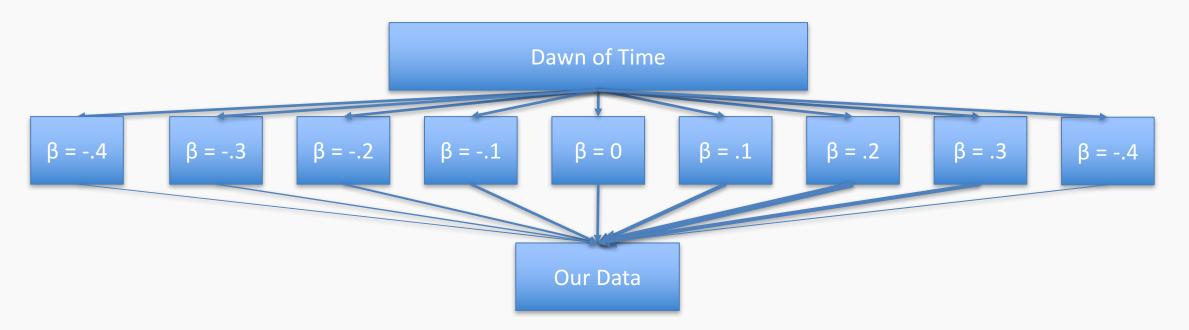
- Let's talk about what we just did
 - That t-test was ONLY testing the model where the coefficient in question is set to zero
 - Ruling out this model makes it more likely that other models are true, but doesn't tell us which ones
 - If the null is β = 0, getting p<.05 only rules out THAT ONE model
- When would it make sense to stop after ruling out $\beta = 0$, without testing $\beta = .1$?

Composite Hypotheses: Multiple Models

- Often, we're interested in trying out more than one candidate model
 - E.g. Can we disprove all models with a negative value of beta?
 - This amounts to simulating data from each of those models (but there are infinitely many...)
- Sometimes, ruling out the nearest model is enough; we know that the other models have to be worse
- If a method claims it can test θ<0, this is how



THE Null vs A Null



- What if we tested LOTS of possible values of beta?
 - Special conditions must hold to avoid multiple-testing issues; again, the t test model+statistic pass them
- We end up with a set/interval of surviving values, e.g. [.1,.3]
 - Sometimes, we can directly calculate what the endpoints would be
- Since each beta was tested under the rule "reject this beta if the observed results are in the top 5% of weird datasets under this model", we have [.1,.3] as a 95% confidence
 interval

Confidence Interval Warnings

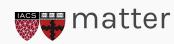
- WARNING: This kind of accept/reject confidence interval is rare
 - Most confidence intervals <u>do not</u> map accept/reject regions of a (useful) hypothesis test
 - A confidence interval that excludes zero does not usually mean a result is statistically significant
 - Statistically significant: The data resulting from an experiment/data collection have p<.05 (or some other threshold) against a no-effect model, meaning we reject the no-effect model
 - It depends on how that confidence interval was built
- A confidence interval's <u>only</u> promise: if you were to repeatedly recollect the data and build 95% CIs, (assuming our story about data generation is correct) 95% of the intervals would contain the true value

- WARNING: A 95% confidence interval DOES NOT have a 95% chance of holding the true value
 - There may be no such thing as "the true value", b/c the model is wrong
- Even if the model is true, a "95% chance" statement requires prior assumptions about how nature sets the true value
- Stick around after section for a heartbreaking demo of why a group of confidence intervals make 95% but any particular CI can be 0%, 100%, or anything in between

- The 209 homework touches on another kind of confidence interval
 - Class: "How well have I estimated beta?"
 - HW: "How well can I estimate the mean response at each X?"
 - Bonus: "How well can I estimate the possible responses at each X"?

Remember those assumptions?





- Ruling out a single model isn't much
- Sometimes, ruling out a single model is enough to rule out a whole class of models
- Assumptions our model makes are weak points that should be justified and checked for accuracy
- Confidence intervals give a reasonable idea of what some unknown value might be
- Any single confidence intervals cannot give a probability
- Statistical significance is 99% unrelated to confidence intervals

STATISTICS: REVIEW

You made it!

Review

- To test a particular model (a particular set of parameters) we must:
 - 1. Specify a data generating process
 - 2. Pick a way to measure whether our data plausibly comes from the process
 - **3.** Pick a rule for when a model cannot be trusted (when is the range of simulated results too different from the observed data?)
- What features make for a good test?
 - We want to make as few assumptions as possible, and choose a measure that is sensitive to deviations from the model
 - If we're clever, we might get math that lets us skip simulating from the model
 - Tension: more assumptions make math easier, fewer assumptions make results broader
- There is no such thing as THE null hypothesis. It's only **A** null hypothesis.
 - A p value only tests one null hypothesis and is rarely enough

As the course moves on, we'll see

- Flexible assumptions about the data generating process
 - Generalized Linear Models
- Ways of making fewer assumptions about the data generating process:
 - Bootstrapping
 - Permutation tests
- Easier questions: Instead of 'find a model that explains the world', 'pick the model that predicts best'
 - Validation sets and cross validation

Office hours are:

Monday 6-7:30 (Camilo) Tuesday 6:30-8 (Will)

- Need a volunteer
 - I'll explain the rules and you'll write down some letter between A and H
- Everyone else: go to Random.org and get a random number between 1 and 10
- If your number was ____your wining letters are:
 1: G,H,I,J,A,B,C,D,E
 2: E,F,G,H,I,J,A,B,C
 3: D,E,F,G,H,I,J,A,B
 4: J,A,B,C,D,E,F,G,H
 5: B,C,D,E,F,G,H,I,J

