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Advanced Section 1

WARNING

This deck uses animations to focus attention and break apart complex 
concepts. 

Either watch the section video or read the deck in Slide Show mode.
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Advanced Section 1

Today’s topics:

Linear Algebra (Math 21b, 8 weeks)

Maximum Likelihood Estimation (Stat 111/211, 4 weeks)

Hypothesis Testing (Stat 111/211, 4 weeks)

Our time limit: 90 minutes
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• We’ll work together

• I owe you this knowledge

• Come debt collect at OHs if I 
don’t do my job today

• Let’s do this : )

• We will move fast

• You are only expected to catch the big 
ideas

• Much of the deck is intended as notes

• I will give you the TL;DR of each slide

• We will recap the big ideas at the end 
of each section
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Interpreting the dot product

What does a dot product mean?
1,5,2 % 3, −2,4 = 1 % 3 + 5 % −2 + 2 % 4

• Weighted sum: We weight the entries of one vector by the entries of the 
other
• Either vector can be seen as weights

• Pick whichever is more convenient in your context

• Measure of Length: A vector dotted with itself gives the squared distance 
from (0,0,0) to the given point
• 1,5,2 % 1,5,2 = 1 % 1 + 5 % 5 + 2 % 2 = 1 − 0 , + 5 − 0 , + 2 − 0 , = 28
• 1,5,2 thus has length 28�

• Measure of orthogonality: For vectors of fixed length, 𝑎 % 𝑏 is biggest when 𝑎
and 𝑏 point are in the same direction, and zero when they are at a 90° angle
• Making a vector longer (multiplying all entries by c) scales the dot product by the 

same amount

Question: how could we get a true measure of orthogonality (one that 
ignores length?)
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Dot Product for Matrices

Matrix multiplication is a bunch of dot products
• In fact, it is every possible dot product, nicely organized

• Matrices being multiplied must have the shapes 𝑛,𝑚 % 𝑚, 𝑝 and the result is of size 
𝑛, 𝑝
• (the middle dimensions have to match, and then drop out)
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Column by Column

• Since matrix multiplication is a dot product, we can think of it as a 
weighted sum
• We weight each column as specified, and sum them together

• This produces the first column of the output

• The second column of the output combines the same columns under different 
weights

• Rows?
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3 1

-2 7

4 -2

Row by Row

• Apply a row of A as weights on the rows B to get a row of output
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𝛽7𝛽,

Span and Column Space

• Span: every possible linear combination of some vectors
• If vectors are the columns of a matrix call it the column space of that matrix

• If vectors are the rows of a matrix it is the row space of that matrix

• Q: what is the span of {(-2,3), (5,1)}? What is the span of {(1,2,3), (-2,-4,-6), 
(1,1,1)}
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Basis Basics

• Given a space, we’ll often want to come up with a set of vectors that 
span it

• If we give a minimal set of vectors, we’ve found a basis for that space

• A basis is a coordinate system for a space
• Any element in the space is a weighted sum of the basis elements

• Each element has exactly one representation in the basis

• The same space can be viewed in any number of bases - pick a good 
one 12
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Function Bases
• Bases can be quite abstract:

• Taylor polynomials express any analytic 
function in the infinite basis 1, 𝑥, 𝑥,, 𝑥7, …

• The Fourier transform expresses many 
functions in a basis built on sines and 
cosines

• Radial Basis Functions express functions in 
yet another basis

• In all cases, we get an ‘address’ for a particular 
function
• In the Taylor basis, sin	(𝑥) 	=

	(0,1,0, 8
A
, 0, 8

8,B
, … )

• Bases become super important in feature 
engineering
• Y may depend on some transformation of x, 

but we only have x itself

• We can include features 1, 𝑥, 𝑥,, 𝑥7, … to 
approximate

13

Taylor approximations to 
y=sin(x)
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3 1

2 -1

3 2

9 7

Transpose

• Transposes switch columns and rows. Written 𝐴D

• Better dot product notation: 𝑎 % 𝑏 is often expressed as 𝑎D𝑏
• Interpreting: The matrix multiplilcation 𝐴𝐵 is rows of A dotted with columns of B

• 𝐴D𝐵 is columns of 𝐴 dotted with columns of 𝐵
• 𝐴𝐵D is       rows of 𝐴 dotted with        rows of 𝐵

• Transposes (sort of) distribute over multiplication and addition: 

𝐴𝐵 D = 𝐵D𝐴D 𝐴 + 𝐵 D = 𝐴D + 𝐵D 𝐴D D = 𝐴

15

3

2

3

9

3 2 3 9𝑥 = 𝑥D =
3 2 3 9

1 -1 2 7
𝐴 = 𝐴D =



CS109A, PROTOPAPAS, RADER

Inverses

• Algebraically, 𝐴𝐴F8 = 𝐴F8𝐴 = 1
• Geometrically, 𝐴F8 writes an arbitrary 

point 𝑏 in the coordinate system 
provided by the columns of 𝐴
• Proof (read this later): 

• Consider 𝐴𝑥 = 𝑏. We’re trying to find 
weights 𝑥 that combine 𝐴’s columns to 
make 𝑏

• Solution 𝑥 = 𝐴F8𝑏 means that when 𝐴F8
multiplies a vector we get that vector’s 
coordinates in A’s basis

• Matrix inverses exist iff columns of the 
matrix form a basis
• 1 Million other equivalents to invertibility: 

Invertible Matrix Theorem
16

How do we write (-2,1) in this basis? 

Just multiply 𝐴F8 by	(-2,1)
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Eigenvalues

• Sometimes, multiplying a vector by a 
matrix just scales the vector
• The red vector’s length triples

• The orange vector’s length halves

• All other vectors point in new 
directions

• The vectors that simply stretch are called 
egienvectors. The amount they stretch is 
their eigenvalue
• Anything along the given axis is an 

eigenvector; Here, (-2,5) is an 
eigenvector so (-4,10) is too

• We often pick the version with length 1

• When they exist, 
eigenvectors/eigenvalues can be used to 
understand what a matrix does

18

Original	vectors:

After	multiplying	by	
2x2	matrix	A:
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Interpreting Eigenthings

Warnings and Examples:
• Eigenvalues/Eigenvectors only apply to square matrices

• Eigenvalues may be 0 (indicating some axis is removed 
entirely)

• Eigenvalues may be complex numbers (indicating the 
matrix applies a rotation)

• Eigenvalues may be repeat, with one eigenvector per 
repetition (the matrix may scales some n-dimension 
subspace)

• Eigenvalues may repeat, with some eigenvectors 
missing (shears)

• If we have a full set of eigenvectors, we know 
everything about the given matrix S, and S =
𝑄𝐷𝑄F8
• Q’s columns are eigenvectors, D is diagonal matrix of 

eigenvalues

• Question: how can we interpret this equation?

19
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Calculating Eigenvalues

• Eigenvalues can be found by:
• A computer program

• But what if we need to do it on a 
blackboard?
• The definition 𝐴𝑥 = 𝜆𝑥

• This says that for special vectors x, 
multiplying by the matrix A is the same as 
just scaling by 𝜆 (x is then an eigenvector 
matching eigenvalue 𝜆)

• The equation det 𝐴 − 𝜆𝐼O = 0
• 𝐼O is the n by n identity matrix of size n by 

n. In effect, we subtract lambda from the 
diagonal of A

• Determinants are tedious to write out, but 
this produces a polynomial in 𝜆 which can 
be solved to find eigenvalues

20

• Eigenvectors matching known eigenvalues can be found by solving A − 𝜆𝐼O 𝑥 =
0 for x
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Matrix Decompositions

• Eigenvalue Decomposition: Some square matrices can be 
decomposed into scalings along particular axes
• Symbolically: S = 𝑄𝐷𝑄F8;            D diagonal matrix of eigenvalues; Q made up of 

eigenvectors, but possibly wild (unless S was symmetric; then Q is orthonormal)

• Polar Decomposition: Every matrix M can be expressed as a rotation 
(which may introduce or remove dimensions) and a stretch

• Symbolically: M = UP or M=PU;    P positive semi-definite, U’s columns orthonormal

• Singular Value Decomposition: Every matrix M can be decomposed 
into a rotation in the original space, a scaling, and a rotation in the 
final space
• Symbolically: 𝑀 = 𝑈𝛴𝑉D;      U and V orthonormal, 𝛴 diagonal (though not square)

22
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Where we’ve been

23

Vector	and	Matrix	dot	product

Invertibility	
𝐴𝑥 = 𝑏 ;	𝑥 = 𝐴F8𝑏

Basis	as	a	coordinate	system	for	a	space
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Span

Other	decompositions
M	=	UP	or	M=PU
𝑀 = 𝑈𝛴𝑉D

Eigenvalues
𝐴𝑥 = 𝜆𝑥
S = 𝑄𝐷𝑄F8
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Practice

• Simplify 𝐴D𝐵 D . What is in position 1,4? What does it mean if that 
value is large?

• What are the eigenvectors of 𝐴,? What are the eigenvalues? 

• What does it mean when an entry of 𝐴D𝐴=0? 

• What about all the facts about inverses and dot products I’ve 
forgotten since undergrad? [Matrix Cookbook] [Linear Algebra Formulas]

24
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Notes

• Matrix multiplication: every dot product between rows of A and columns of B
• Important special case: a matrix times a vector is a weighted sum of the matrix 

columns

• Dot products measure similarity between two vectors: 0 is extremely un-alike, 
bigger is pointing in the same direction and/or longer

• Alternatively, a dot product is a weighted sum

• Bases: a coordinate system for some space. Everything in the space has a unique 
address

• Matrix Factorization: all matrices are rotations and stretches. We can decompose 
‘rotation and stretch’ in different ways

• Sometimes, re-writing a matrix into factors helps us with algebra

• Matrix Inverses don’t always exist. The ‘stretch’ part may collapse a dimension.  
𝑀F8 can be thought of as the matrix that expresses a given point in terms of 
columns of M

• Span and Row/Column Space: every weighted sum of given vectors

• Linear (In)Dependence is just “can some vector in the collection be represented as a 
weighted sum of the others” if not, vectors are Linearly Independent 26
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LINEAR REGRESSION
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Review and Practice: Linear Regression

• In linear regression, we’re trying to write our response data y as a linear function of 
our [augmented] features X

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝛽8𝑓𝑒𝑎𝑡𝑢𝑟𝑒8 +	𝛽,𝑓𝑒𝑎𝑡𝑢𝑟𝑒, + 𝛽7𝑓𝑒𝑎𝑡𝑢𝑟𝑒7 +…
𝑦 = 𝑋𝛽

• Our response isn’t actually a linear function of our features, so we instead find 
betas that produce a column �̂� that is as close as possible to 𝑦 (in Euclidean 
distance)

min
`

(𝑦 − �̂�)D(𝑦 − �̂�)� = min
`

(𝑦 − 𝑋𝛽)D(𝑦 − 𝑋𝛽)�

• Goal: find that the optimal 𝛽 = 𝑋D𝑋 F8𝑋D𝑦
• Steps:

1. Drop the sqrt [why is that legal?]

2. Distribute the transpose

3. Distribute/FOIL all terms

4. Take the derivative with respect to 𝛽 (Matrix Cookbook (69) and (81): derivative of 𝛽D𝑎
is 𝑎D, …)

5. Simplify and solve for beta 28
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Interpreting LR: Algebra

• The best possible betas, 𝛽a = 𝑋D𝑋 F8𝑋D𝑦 can be viewed in two parts:
• Numerator (𝑋D𝑦): columns of X dotted with (the) column of y; how related are the feature 

vectors and y?

• Denominator (𝑋D𝑋): columns of X dotted with columns of X; how related are the different 
features? 

• If the variables have mean zero, “how related” is literally “correlation”
• Roughly, our solution assigns big values to features that predict y, but 

punishes features that are similar to (combinations of) other features

• Bad things happen if 𝑋D𝑋 is uninvertible (or nearly so)

29

𝛽a = 𝑋D𝑋 F8𝑋D𝑦
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Interpreting LR: Geometry

• The only points that CAN be expressed as X𝛽 are those in the span/column space of X. 
• By minimizing distance, we’re finding the point in the column space that is closest to the 

actual y vector

• The point X𝛽a is the projection of the observed y values onto the things linear regression 
can express

• Warnings: 
• Adding more columns (features) can only make the span bigger and the fit better

• If some features are very similar, results will be unstable

30

�̂� = 𝑋𝛽a = 𝑋 𝑋D𝑋 F8𝑋D𝑦

Observed response values

Best we can do with 
a
linear combination 
of  features



STATISTICS
Linear	Regression
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ML to Statistics

• What we’ve done so far is the Machine Learning 
style of modeling:

• Specify a loss function [Squared error] and a 
model format [y=Xβ]

• Find the settings that minimize the loss function

• Statistics adds more assumptions and gets back 
richer results

• Adds assumptions about where the data came 
from

• We can ask “What about other beta values? On a 
different day, might we get that result instead?”

• Statistics can answer yes/no via our assumptions 
about where the data come from

32

Statistics

𝛽8
𝛽,

𝑙𝑜𝑠𝑠

Machine	Learning

Optim
al 
Betas
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Statistical Assumptions

What are Statistics’ assumptions about the 
linear regression data?

• The observed X values simply are.

• The observed y come from a 
𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑢(𝑥), 𝑠𝑖𝑔𝑚𝑎)	distribution, 
mu(x) is linear, and each y is drawn 
independently from the others
• For all observations i:      𝑦g~𝑁 𝑥gβ, 𝜎,

• Equivalently, column y     
𝑦~𝑁kl 𝑋𝛽, 𝜎,𝐼O

Why these assumptions?

• Any story about how the X data came to be 
is problem-dependent

• Makes the problem solvable using 1800s 
era tools

Question: How could we alter these 
assumptions? 33

Image	from:	http://bolt.mph.ufl.edu/6050-6052/unit-4b/module-15/

𝜇g = 𝑥gβ 𝜎, unknown	constant

β	vector	of	unknown	constants

𝑦g~𝑁 𝜇g, 𝜎,
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Maximum Likelihood: the other ML

• We need to guess at the unknown values (β and 𝜎,)

Maximum Likelihood

• Rule: Guess whatever values of the unknowns make the observed 
data as probable as possible
• As a loss function, we feel pain when the data surprise the model

• Only works if we have a likelihood function
• Likelihood maps (dataset) -> (probability of seeing that dataset); uses 

parameter values (e.g. β and 𝜎,) in the calculation

• Actually maximizing can be hard

• But, Maximum Likelihood can be shown to be a very good guessing 
strategy, especially with lots of observations (see Stat 111 or 211)

34
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Maximum Likelihood: the other ML

• Likelihood (Probability of seeing data y, given parameters X, β, and 
𝜎,):

𝑃 𝑌 = 𝑦|𝑋, β, 𝜎, = 𝑁 𝑋𝛽, 𝜎,𝐼O =
1

2𝜋 𝜎,𝐼O
� 𝑒F

8
, rFs` t(uvwx)yz rFs`

• Since X is constant, we’re maximizing by choosing the vector β and scalar 
𝜎,

• Finding optimal β quickly reduces to the least squares problem we just saw: 
min
`
	(𝑦 − 𝑋𝛽)D(𝑦 − 𝑋𝛽)

• Optimal 𝜎, = residuals under the optimal {
(number of observations – number of features)

35
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Benefits of assumptions

• We actually get the joint distribution of the betas: 
𝛽|}~~𝑁(𝛽D���, 𝜎, 𝑋D𝑋 F8)

• HW investigates the variance term: how well we can learn each beta, 
and whether one is linked to another
• It depends on X!

• It doesn’t depend on y! (If our assumptions are correct

• Lets us attach error bars to our estimates, e.g. 𝛽8 = 3 ± .2

• Main question: What can we do to our X matrix to 

36
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Review

• We can add assumptions about where the data came from 
and get richer statements from our model

• A Likelihood is a function that tells us how likely any given 
dataset is. Plug in data, get a probability

• The MLE finds the parameter settings that make our data 
as likely as possible

• Finding the MLE parameter values can be hard, sometimes 
possible via calculus, often requires computer code

37



STATISTICS: HYPOTHESIS TESTING
OR:	WHAT	PARAMETERS	EXPLAIN	THE	DATA
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A Popper’s Grave

• It’s impossible to prove a model is 
correct
• In fact, there are many correct 

models

• Can you prove increasing a 
parameter by .0000001% is incorrect?

• We can only rule models out.

• The great tragedy is that you have 
been taught to rule out just ONE 
model, and then quit

39
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Model Rejection

• Important: a ‘model’ is a (probabilistic) 
story about how the data came to be, 
complete with specified values of every 
parameter

• The model produces many possible datasets

• We only have one observed dataset

• How can we tell if a model is wrong?
• If the model is unlikely to reproduce the 

aspects of the data that we care about, it has 
to go

• Therefore, we have some real-number 
summary of the dataset (a ‘statistic’) by 
which we’ll compare model-generated 
datasets and our observed dataset

• If the statistics produced by the model are 
clearly different than the one from the real 
data, we reject the model

40
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Recap: How to understand any test

• Any model test specifies:
1. A (probabilistic) data generating process

2. A summary we’ll use to compress a dataset

3. A rule for comparing the observed and the simulated summaries

• Example: t-test
1. The y data are generated via the estimated line/plane, plus Normal(0,sigma) 

noise, 

EXCEPT a particular coefficient is actually zero!

2. The coefficient we’d calculate for that dataset (minus 0), over the SE of the 
coefficient

t statistic = 
`���������FB
�~�(`��������)

3. Declare the model bad if the observed result is in the top/bottom α% of 
simulated results (commonly top/bottom 5%)

41

(Jargon: the null hypothesis)
(Jargon: a statistic)
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The t-test

Walkthrough:

• We set a particular beta we care about 
to zero (call these betas 𝛽O���) 

• We simulate 10,000 new datasets using 
𝛽O��� as truth

• In each of the 10,000 datasets, fit a 
regression against X and plot the values 
of the 𝛽 we care about (the one we set to 
zero)

• The plotting the t statistic in each 
simulation is a little prettier

• The t statistic calculated from the 
observed data was 17.8. Do we think 
the proposed model generated our data?

42

• One more thing: Amazingly, ‘Student’ knew what results we’d get from the simulation

𝛽O��� = [2.2, 5, 0, 1.6]

𝛽�gk8 𝛽�gk, 𝛽�gk7 … 𝛽�gk8B,BBB

𝛽|}~ = [2.2, 5, 3, 1.6]T-test	for	𝜷𝟐 =	0	

𝑋���𝜎|}~

𝑦�gk8 𝑦�gk, 𝑦�gk7 … 𝑦�gk8B,BBB

𝑋𝛽
𝜎
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The Value of Assumptions

• Student’s clever set-up lets us skip the 
simulation

• In fact, all classical tests are built around 
working out what distribution the results 
will follow, without simulating
• Student’s work lets us take infinite samples at 

almost no cost

• These shortcuts were vital before computers, 
and are still important today
• Even so, via simulation we’re freer to test and 

reject more diverse models and use wilder 
summaries

• However, the summaries and rules we choose 
still require thought: some are much better 
than others

43

Define	Model

Get	Simulated	
Datasets/Statistics

Compare	to	
Observed	Data

Decision
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p-values

• Hypothesis (model) testing leads to 
comparing a distribution against a 
point

• A natural way to summarize: report 
what percentage of results are more 
extreme than the observed data
• Basically, could the model frequently 

produce data that looks like ours?

• This is the p value: p=.031 means that 
your observed data is in the top 3.1% of 
weird results under this model+statistic
• There is some ambiguity about what 

‘weird’ should mean

Jargon: p values are “The probability, assuming the null 
model is exactly true, of seeing a value of [your statistic] 
as extreme or more extreme than what was seen in the 
observed data” 44

Results	From	Simulation

Fr
eq

ue
nc
y Results	from	observed	

dataset

Distribution	of	Simulation	Results

Simulations	weirder	
than	the	observed	data

?
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p Value Warnings

• p values are only one possible measure of the evidence 
against a model

• Rejecting a model when p<threshold is only one possible 
decision rule
• Get a book on Decision Theory for more

• Even if the null model is exactly true, 5% of the time, 
we’ll get a dataset with p<.05
• p<.05 doesn’t prove the null model is wrong

• It does mean that anyone who wants to believe in the null must 
explain with why something unlikely happened

45
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Recap

• We can’t rule models in; we can only rule them out

• We rule models out when the data they produce is different 
from the observed data
• We pick a particular candidate (null) model

• A statistic summarizes the simulated and observed datasets

• We compare the statistic on the observed data to the simulated 
or theoretical distribution of statistics the null produces

• We rule out the null if the observed data doesn’t seem to come 
from the model

• A p value summarizes the level of evidence against a 
particular null
• “The observed data are in the top 1% of results produced by this 

model… do you really think we hit those odds?” 46



STATISTICS: HYPOTHESIS TESTING
CONFIDENCE	INTERVALS	AND	COMPOSITE	HYPOTHESES
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Recap

• Let’s talk about what we just did
• That t-test was ONLY testing the model where the coefficient in question is 

set to zero

• Ruling out this model makes it more likely that other models are true, but 
doesn’t tell us which ones

• If the null is β = 0, getting p<.05 only rules out THAT ONE model

• When would it make sense to stop after ruling out β = 0, without 
testing β = .1?

48

Dawn	of	Time

β =	-.3 β =	-.2 β =	-.1 β =	0 β =	.1 β =	.2 β =	.3

Our	Data

β =	-.4 β =	-.4
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Composite Hypotheses: Multiple Models

• Often, we’re interested in trying out more 
than one candidate model

• E.g. Can we disprove all models with a 
negative value of beta?

• This amounts to simulating data from 
each of those models (but there are 
infinitely many…)

• Sometimes, ruling out the nearest 
model is enough; we know that the other 
models have to be worse

• If a method claims it can test θ<0, this is 
how

49

β
β=MLEβ=0

Can	we	rule	these	out?

β=0	will	be	closer	to	matching	the	data	(in	
terms	of	t	statistic)	than	any	other	model	in	
the	set*;	we	only	need	to	test	β=0
*	Non-trivial;	true	for	student’s	t	but	not	for	other	measures
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β =	-.2β =	-.4

THE Null vs A Null

• What if we tested LOTS of possible values of beta?
• Special conditions must hold to avoid multiple-testing issues; again, the t test model+statistic

pass them

• We end up with a set/interval of surviving values, e.g. [.1,.3]
• Sometimes, we can directly calculate what the endpoints would be

• Since each beta was tested under the rule “reject this beta if the observed results are in 
the top 5% of weird datasets under this model”, we have [.1,.3] as a 95% confidence 
interval

50

Dawn	of	Time

Our	Data

β =	0 β =	.1 β =	.2 β =	.3β =	-.1β =	-.3 β =	-.4
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Confidence Interval Warnings

• WARNING: This kind of accept/reject confidence interval is rare
• Most confidence intervals do not map accept/reject regions of a (useful) 

hypothesis test

• A confidence interval that excludes zero does not usually mean a result is 
statistically significant
• Statistically significant: The data resulting from an experiment/data collection have p<.05 (or 

some other threshold) against a no-effect model, meaning we reject the no-effect model

• It depends on how that confidence interval was built

• A confidence interval’s only promise: if you were to repeatedly re-
collect the data and build 95% CIs, (assuming our story about data 
generation is correct) 95% of the intervals would contain the true 
value
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Confidence Interval Warnings

• WARNING: A 95% confidence interval DOES NOT have a 95% 
chance of holding the true value
• There may be no such thing as “the true value”, b/c the model is 

wrong

• Even if the model is true, a “95% chance” statement requires 
prior assumptions about how nature sets the true value

• Stick around after section for a heartbreaking demo of why 
a group of confidence intervals make 95% but any 
particular CI can be 0%, 100%, or anything in between
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HW Preview

• The 209 homework touches on another kind of confidence 
interval
• Class: “How well have I estimated beta?”
• HW: “How well can I estimate the mean response at each X?”
• Bonus: “How well can I estimate the possible responses at each 

X”?

53



CS109A, PROTOPAPAS, RADER

Remember those assumptions?

54

Dawn	of	Time

β =	-.2 β =	-.1 β =	0 β =	.1 β =	.2

Our	Data

Dawn	of	Time

All	other	betas	have	their	MLE	values Other	betas	have	different	values

Dawn	of	Time

World	is	not	linear World	has	non-Gaussian	
noise

World is linear w/ 
MLE	Gaussian	noise

β =	-.2 β =	-.1 β =	0 β =	.1 β =	.2

Our	Data

• We rejected the null model(s) as tested, not the idea that β=0 – assumptions 
matter
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Review

• Ruling out a single model isn’t much

• Sometimes, ruling out a single model is enough to rule out 
a whole class of models

• Assumptions our model makes are weak points that 
should be justified and checked for accuracy

• Confidence intervals give a reasonable idea of what some 
unknown value might be

• Any single confidence intervals cannot give a probability

• Statistical significance is 99% unrelated to confidence 
intervals
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STATISTICS: REVIEW
You	made	it!
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Review

• To test a particular model (a particular set of parameters) we must:
1. Specify a data generating process

2. Pick a way to measure whether our data plausibly comes from the process

3. Pick a rule for when a model cannot be trusted (when is the range of 
simulated results too different from the observed data?)

• What features make for a good test?
• We want to make as few assumptions as possible, and choose a measure 

that is sensitive to deviations from the model

• If we’re clever, we might get math that lets us skip simulating from the 
model

• Tension: more assumptions make math easier, fewer assumptions make 
results broader

• There is no such thing as THE null hypothesis. It’s only A null 
hypothesis.
• A p value only tests one null hypothesis, and is rarely enough 57
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Going forward

As the course moves on, we’ll see

• Flexible assumptions about the data generating process
• Generalized Linear Models

• Ways of making fewer assumptions about the data 
generating process:
• Bootstrapping

• Permutation tests

• Easier questions: Instead of ‘find a model that explains the 
world’, ‘pick the model that predicts best’
• Validation sets and cross validation
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Thank you

Office hours are:

Monday 6-7:30 (Camilo)

Tuesday 6:30-8 (Will)
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Bonus: Heartbreaking Demo

• Need a volunteer
• I’ll explain the rules and you’ll write down some letter between A 

and H

• Everyone else: go to Random.org and get a random number 
between 1 and 10

• If your number was __ your wining letters are: 
1: G,H,I,J,A,B,C,D,E 6: F,G,H,I,J,A,B,C,D

2: E,F,G,H,I,J,A,B,C 7: I,J,A,B,C,D,E,F,G

3: D,E,F,G,H,I,J,A,B 8: C,D,E,F,G,H,I,J,A

4: J,A,B,C,D,E,F,G,H 9: H,I,J,A,B,C,D,E,F

5: B,C,D,E,F,G,H,I,J 10: A,B,C,D,E,F,G,H,I
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