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In the last chapter, we introduced GLMs and, in particular, logistic regression,
which was our first model for the task of classification, which we will formalize
below. Such models were based on probabilistic foundations, and had statistical
interpretations for the predictions. We now proceed to describe two methods of
classification that do not have such foundations, but are grounded in considerations
of optimizing predictive power.

Classification and Statistical Learning Theory

First, we formalize the problem of classification. We assume that we are given a
set of points, called the training set, denoted {(yi, xi)}ni=1. We consider the special
(but common) case of binary classification, so that

yi ∈ [−1, 1]

for all i, and xi ∈ Rp. As we noted previously, one possibility for modeling such
data is to use logistic regression by assuming that

yi|xi ∼ Bern

(
exp(xTi β)

1 + exp(xTi β)

)
which yields a generalized linear model for y given x. This endows the observations
with a probabilistic structure.

Given such a model, we can then make predictions on new data x∗ by construct-
ing a discriminant function. A discriminant f : Rp → [−1, 1] is a function that
takes the covariates x and outputs a predicted label ±1. In the logistic regression
case, one natural family of discriminants is to consider functions of the form

f(x) =

{
+1 if P (y = +1|x, β) ≥ c
−1 otherwise

which states that we predict that the class is +1 if the model-predicted probability
is higher than some threshold. We showed that such a discriminant is equivalent
to the following linear discriminant

f(x) =

{
+1 if xTβ ≥ c̃
−1 otherwise

due to the linear relationship between the covariates and the probability.
From the perspective of discriminants, however, it is not necessary to require

that a classification model be grounded in a probabilistic framework. We can
consider arbitrary functions f that predict the outcome y, and optimize among
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these functions based on some loss criterion. For binary classification, the most
obvious choice of loss function is known as the 0-1 loss, namely

l(f(x), y) = 1f(x)6=y

That is, we penalize according to the number of incorrect predictions made by our
discriminant f .

When we consider all possible functions f , we can perfectly classify all points
in our training set; we can simply set f(xi) = yi for all i and let f be arbitrary
elsewhere. However, what concerns us is not how well we “predict” on training
data (which our classifier has already seen), but rather how well we predict on new
data, namely the test set. If we need to use a highly-complex function f in order
to perfectly classify our training set, it can often lead to overfitting, in which the
loss on the training set (which is what we optimize) is considerably lower than that
on the test set (which is what we want to optimize).

In fact, in a seminal paper founding statistical learning theory, Vapnik and Cher-
vonenkis defined the celebrated VC dimension, which measures the capacity (or
complexity) of the set of functions under consideration. Suppose we are considering
a parametrized family of functions

F ≡ {fθ : θ ∈ Θ}
Equivalently, we are considering a model F such as logistic regression, and are
aiming to optimize a loss criterion to find a parameter θ that yields our discriminant
or classifier fθ. We then say that F shatters the training set if there exists some
θ ∈ Θ such that fθ perfectly classifies all points in the training set. Then, we define
the VC dimension of F as the maximum cardinality of the training set that can be
shattered by F ,

V C(F) ≡ max{n ∈ N : ∃ dataset Dn of size n and f ∈ F s.t. f shatters Dn}
The importance of the VC dimension is that classification error on the test set

can be upper bounded by the error on the training set and the VC dimension.
Heuristically, the idea is that

Test error ≤ Training error + Model complexity

where model complexity is an increasing function of VC dimension.

Support Vector Machines

These considerations lead us to consider “simpler” models that generalize well
to unseen data while still preserving classification performance (though there is a
natural trade-off between the two). That is, since we would like to minimize test
error, our goal is to minimize training error (which we do directly or by a surrogate
loss function) while also minimizing model complexity.

One possibility is to consider linear classifiers in x, which is equivalent to consid-
ering a hyperplane in the space of covariates to separate the points. In the linearly
separable case, in which a hyperplane can perfectly separate (and thus classify)
the training set, we can consider creating a “good” hyperplane in the sense that we
maximize the distance from any of the points to the hyperplane. This approach is
known as the support vector machine (SVM).

That is, we consider hyperplanes of the form

wTx = 0
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where w ∈ Rp are the weights that define the hyperplane. Then, we use the
discriminant

fw(x) ≡ sign(wTx)

which defines the family of functions F = {fw : w ∈ Rp} as our functions of interest.
Our goal is to maximize the minimum distance from the points to the hyperplane.

One can show that the distance from the point x to the hyperplane defined above
is given by

|wTx|
‖w‖

Assuming that all points can be correctly classified, we must have

|wTx| = ywTx

Thus, our goal is to maximize

max
w

1

‖w‖

[
min
i

(yiw
Txi)

]
Clearly, this is a very complicated optimization problem. One innovation was to

turn this problem into an equivalent problem that is more easily solved. First, we
have the freedom to constrain w since the margin is unchanged by scaling, so that
we enforce

min
i
yi(w

Txi) = 1

so that every observation (yi, xi) satisfies

yi(w
Txi) ≥ 1

Thus, we now only need to consider the maximization of ‖w‖−1, which is equivalent
to minimizing ‖w‖2. Thus, we are led to the quadratic programming problem

min
w

1

2
‖w‖2

s.t. yi(w
Txi) ≥ 1

This is achieved by using Lagrange multipliers and constructing the Lagrangian

L(w, a) ≡ 1

2
‖w‖2 −

n∑
i=1

ai
[
yi(w

Txi)− 1
]

We can then use the first-order conditions to eliminate w entirely to obtain the
dual representation of an SVM:

L̃(a) ≡
n∑
i=1

ai −
1

2

n∑
i,j=1

aiajyiyjx
T
i xj =

n∑
i=1

ai −
1

2

n∑
i,j=1

aiajyiyjk(xi, xj)

where k(xi, xj) = xTi xj is a kernel function. This is subject to the constraints
ai ≥ 0 and

∑n
i=1 aiyi = 0.

Given the dual parameters a, we can predict a new point x by considering the
sign of the following (again eliminating w through the first-order conditions)

n∑
i=1

aiyix
Txi =

n∑
i=1

aiyik(x, xi)
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It can be shown that the dual representation satisfies the Karush-Kuhn-Tucker
(KKT) conditions, which yields the following properties

ai ≥ 0

yi(w
Txi)− 1 ≥ 0

ai(yiw
Txi − 1) = 0

Thus, for every i, either ai = 0 or yi(w
Txi) = 1. The points for which ai > 0 are

called support vectors. This is because these points are the only ones that impact
the prediction, since when ai = 0, (yi, xi) play no role in the dual classification rule
above. In fact, the prediction rule for future x is essentially a weighted average of
yi among the support vectors, weighted by the “similarity” of the points x to the
covariates xi.

Moreover, one can see from the primal formulation that only the points for which
ai > 0 are on the margin; that is, these points satisfy the constraint

yiw
Txi = 1

Thus, this implies that the only points that influence predictions are the ones that
are on the margin, and after training the SVM, we can throw away all other points
not on the margin for predictive purposes.

C-SVM (Soft-Margin SVM)

In most real cases, the training set will not be linearly separable, even with a
fairly sophisticated transformation of the feature space (i.e. using some φ(x) rather
than x directly). However, in the SVM, we actually enforced perfect classification
accuracy by adding yi(w

Txi) ≥ 1 as a constraint, effectively putting infinite loss on
points that lie on the wrong side of the hyperplane.

To get around this issue, we would like to allow for points to be on the wrong
side, but to penalize the distance that the point takes inside its proper margin.
That is, if a point is incorrectly classified, it should incur a higher loss if it is far
on the wrong side. We thus introduce slack variables for each point as

ξi ≡
{

0 outside correct margin
|yi − wTxi| otherwise

For example, if a point is inside the margin but on the correct side, 0 ≤ ξi < 1; if it
is on the hyperplane, then ξi = 1; and if ξi > 1, then it is misclassified. Moreover,
we have

yi(w
Txi) ≥ 1− ξi

Note that slack variables provide a linear measure of how far the point is from the
correct side of the hyperplane, and that now it is possible for support vectors to lie
inside the margins.

With these considerations, we seek to minimize

min
w
C

n∑
i=1

ξi +
1

2
‖w‖2

s.t. ξi ≥ 0

and yi(w
Txi) ≥ 1− ξi

according to the constraints, where C controls the trade-off between the slack vari-
able penalty and the margin. As C →∞, we recover the hard-margin SVM, whereas
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for C → 0, we obtain a “flat” hyperplane that places no penalty on misclassification
(i.e. the optimum is found when ξi →∞ and w → 0).

Again, we consider the dual form by eliminating w using the Lagrangian and
first-order conditions

L(w, a, bs) ≡ 1

2
‖w‖2 + C

n∑
i=1

ξi −
n∑
i=1

ai[yi(w
Txi)− 1 + ξi]−

n∑
i=1

biξi

After eliminating w, ξ, µ from the Lagrangian, we obtain the dual representation
of the C-SVM as

L̃(a) ≡
n∑
i=1

ai −
1

2

n∑
i,j=1

aiajyiyj(x
T
i xj) =

n∑
i=1

ai −
1

2

n∑
i,j=1

aiajyiyjk(xi, xj)

with the constraints 0 ≤ ai ≤ C,
∑n
i=1 aiyi = 0. Thus, this is identical to the

separable case, except with an additional constraint on ai ≤ C. We also obtain
similar KKT conditions, the important of which are

yi(w
Txi)− 1 + ξi ≥ 0

ai(yi(w
Txi)− 1 + ξi) ≥ 0

which shows that for the support vectors with ai > 0, we must have

yi(w
Txi) = 1− ξi

Additional intuition and characterization of the support vectors based on the dual
representation are possible, and can be found in further references.


