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As we saw in the last chapter, one method of dealing with high-dimensional data
(that is, when p ≈ n or even p > n) is regularization. In particular, by using the
LASSO estimator, one can simultaneously conduct variable selection and regression
by choosing appropriate values for the regularization parameter λ. The elastic
net method allows us to combine these strengths with the shrinkage properties of
the ridge regressor as well, yielding a fairly robust technique for high-dimensional
inference.

While this does allow us to analyze and perform regressions on high-dimensional
data, it seems somewhat naive in the following sense. Suppose that p is large,
whether or not relative to n. Then, the LASSO estimator, for example, would
select some p′ < p predictors with an appropriate choice of λ. However, it is not at
all clear that the chosen p′ predictors are the “appropriate” variables to consider
in the problem. This may be clearer in light of an example.

Example 0.1. Consider the spring system depicted in Figure 1, where, for sim-
plicity, we assume no mass, friction, or air resistance. By understanding the physics
of the problem, it is clear that there is only one degree of freedom in the system,
which is indicated by the x-axis. However, a priori, we may not know this is this
case, and therefore measure the position of the ball attached to the spring from, say,
three arbitrary angles. This is depicted by the three cameras A,B,C; denote these
measured variables as xA, xB , xC respectively. Let us also measure the pressure on
the spring, which can be obtained by considering the weight of the spring against
the wall. Denote this value as Y .

Suppose that we conduct LASSO regression on this problem, namely

Y = βAxA + βBxB + βCxC

By sheer luck, it turns out that the values xA measured by camera A are closest
to the true underlying degree of freedom (along the x-axis), and so the LASSO

estimator selects xA and sets β̂B = β̂C = 0. Yet scientifically, this is an unsatisfac-
tory conclusion; we would like to be able to discern the true degree of freedom as
the predictor, not simply select one of the arbitrary directions we decided to take
measurements in. �

In a similar vein, when faced with a dataset with a number or dimensions of pre-
dictors, we may suspect that the data actually lie on a lower-dimensional manifold;
in the same sense that three measurements were necessary to situate the ball on
a spring in the example above, but the data only had one true degree of freedom.
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Figure 1. Toy example of experimenting on a spring system,
taken from Shlens (2003) [3].

Thus, rather than variable selection methods such as LASSO, we may want to con-
sider more sophisticated techniques for learning the intrinsic dimensionality of the
data, a field known as dimensionality reduction or manifold learning.

1. Preliminaries in Linear Algebra and Statistics

The above example and discussion serve to motivate the introduction of princi-
pal component analysis, or PCA. Before we discuss PCA, however, we present
some necessary preliminary results from linear algebra and statistics.1

1.1. Linear Algebra. For this section, let X denote an arbitrary n× p matrix of
real numbers, X ∈ Rn×p. We assume that the reader is familiar with the basic
matrix computations, such as matrix multiplication, transpose, row reduction, and
eigenvalue/eigenvector determination.

Proposition 1.1. For any such matrix X, the matrices XTX and XXT are sym-
metric.

Proof. To show symmetry of a matrix A, it suffices to show that AT = A. Clearly,
this holds in our case, since

(XTX)T = XT (XT )T = XTX

and similarly for XXT . �

The above proposition, while simple, will prove very useful due to an attractive
property of real, symmetric matrices as given in the following theorem. Indeed,
the following is often considered the fundamental theorem of linear algebra, and is
known as the spectral theorem.

Theorem 1.2. If A is a real, symmetric matrix, then there exists an orthonormal
basis of eigenvectors of A.

1Much of the presentation follows that of Jauregui (2012) [2].
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In order words, for any such matrix A ∈ Rm×m, we can find a basis {v1, . . . , vn}
such that the basis is orthonormal, which means that the basis vectors are orthog-
onal (vi ⊥ vj , so that vTi vj = 0) and normalized to unity (‖vi‖2 = 1). Moreover,
this basis consists of eigenvectors of A, so that Avi = λivi for λi ∈ R.

Alternatively, if we stack the eigenvectors as rows, we obtain the matrix UT , and
we can express the eigendecomposition of A as

A = UΛUT

where Λ = diag(λi) is the diagonal matrix of eigenvalues, and U is an orthogonal
matrix (so that UT = U−1).

The proof of the theorem is quite technical, and we state the theorem here
without proof. Moreover, there is a considerable amount of theory involving the set
of eigenvalues of A, which is called its spectrum. The spectrum of a matrix reveals
much about its properties, and though we do not delve into it here, we encourage
the reader to refer to the bibliography for further details.

We can, however, discuss one important property of the spectrum for the Gram
matrices XTX and related XXT ; namely, that the eigenvalues are nonnegative.

Proposition 1.3. The eigenvalues of XTX and XXT are nonnegative reals.

Proof. Suppose λ is an eigenvalue of XTX with associated eigenvector v. Then,

‖Xv‖22 = (Xv)T (Xv) = vT (XTXv) = λvT v = λ‖v‖22
Since both ‖Xv‖22, ‖v‖22 ≥ 0, we must have λ ≥ 0. The result for XXT follows from
a similar proof using XT instead of X. �

In fact, it turns out that the nonzero eigenvalues of these matrices are identical,
as the following Proposition shows.

Proposition 1.4. The matrices XXT and XTX share the same nonzero eigen-
values.

Proof. Suppose that λ is a nonzero eigenvalue of XXT with associated eigenvector
v. Then

XXT v = λv ⇒ (XTX)XT v = λXT v

Thus, λ is also an eigenvalue of XTX, with associated eigenvector XT v rather
than v. Moreover, XT v 6= 0, since otherwise XXT v = 0, which would imply that
λ = 0, which contradicts our assumption. A similar proof concludes the proof for
XTX. �

1.2. Statistics. In this section, we return to considering X ∈ Rn×p as the model
matrix. From this point on, we assume that the predictors are all centered, which
means that for each column Xj of X, we subtract the sample column mean

µ̂j = n−1
n∑

i=1

xij

so that we are considering the centered model matrix

X̃ =
(
X1 − µ̂1 X2 − µ̂2 · · · Xp − µ̂p

)
Note that each column now has expectation zero, so that we can consider the
sample covariance matrix

S ≡ (n− 1)−1X̃T X̃
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This is a modified Gram matrix, using the centered columns (or predictors) and
scaling by n− 1. One way to understand the origin of the name is to consider each
of the terms in the matrix. The diagonal terms all have the form

Sjj = (n− 1)−1
n∑

i=1

(xij − µ̂j)
2

whereas the off-diagonal terms have the form

Sjk = (n− 1)−1
n∑

i=1

(xij − µ̂j)(xik − µ̂k)

Thus, it is clear that the diagonal terms yield the sample variances of each of the
predictors, whereas the off-diagonal terms yield the sample covariances.

2. Principal Component Analysis

With the above preliminaries, the actual methodology of PCA is now quite
simple. The main idea is that in order to conduct dimensionality reduction and
obtain the irreducible degrees of freedom inherent in the problem, we would like
to remove as much redundancy in our predictors as possible. The way that PCA
defines such redundancy is by using the correlation (or covariance) between the
predictors. For instance, if predictors xj and xk are highly correlated, it is likely
that one holistic predictor may suffice instead.

Proceeding to the mathematics, we first use Proposition 1.1 to note that the
sample covariance matrix S is a symmetric matrix, and thus we can apply Theorem
1.2 to obtain an orthonormal basis of eigenvectors of S, such that the eigenvalues
are ordered λ1 ≥ λ2 ≥ · · · ≥ λp, with corresponding eigenvectors u1, . . . , up.

The vector ui is called the ith principal component of S, and λi is a measure
of the “variance explained” by that principal component. This is because the trace
of S,

trace(S) ≡
p∑

j=1

Sjj = (n− 1)−1
p∑

j=1

n∑
i=1

(xij − µ̂j)
2

can be considered the “total sample variance” of the predictors, as it sums up the
sample variances of each of the p predictor variables. But the trace of S also equals
the sum of its eigenvalues

trace(S) =

p∑
j=1

λj

Moreover, as demonstrated by Proposition 1.3, all of the eigenvalues of S are
nonnegative. Thus, λi/

∑
j λj = λi/trace(S) represents, in a heuristic sense, the

fraction of the “total sample variance” accounted for by the eigenvector or principal
component ui.

In general, it will often be the case that the largest eigenvalues are orders of
magnitude greater than the others, because the data may indeed have fewer degrees
of freedom than the number of predictors may indicate. In practice, one keeps only
the principal components with the largest eigenvalues, and discards the rest, thereby
reducing the dimension of the problem, as shown in Figure 2. Thus, a smaller
subset of the eigenvalues being significantly larger than the others indicates the
possibility of dimensionality reduction. How many components to keep is left to the
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Figure 2. An example of dimensionality reduction by PCA,
thresholding the eigenvectors to keep based on examination of the
eigenvalue magnitudes.

data analyst’s discretion, but it is generally clear (when dimensionality reduction
is possible).

Intuitively, the principal components ui denote directions in Rn that are “natu-
ral” for the problem at hand, and are linear combinations of the original coordinates.
For example, in the spring system example, we may have u1 = (0.9, 0.2, 0.4) as the
first principal component, which may have λ1/

∑
j λj ≈ 1, as it represents the x-

axis. Consequently, the possibility of dimensionality reduction also indicates that
there may be fewer but more interpretable variables, represented by the principal
components, that are responsible for the variability of a response.

3. Assumptions of Principal Component Analysis

There are a number of assumptions that were both implicitly and explicitly made
in order to motivate and justify the PCA method described in the previous section.

A. Linear change of basis. Note that all of the operations above are linear opera-
tions; indeed, PCA consists essentially of a change of basis, from the Euclidean
basis (in which we measure our predictors) to an orthonormal basis of eigenvec-
tors of XTX. Thus, PCA assumes that such a linear change of basis is sufficient
for identifying degrees of freedom and conducting dimensionality reduction.

B. Mean/variance is sufficient. In applying the PCA technique to our data, we
only using the means (for standardizing) and covariance matrix associated with
our predictors. Thus, the method assumes that such statistics are sufficient for
describing the distributions of the predictor variables. This is, in fact, only the
case if the predictors are drawn jointly from a multivariable Normal distribution,
but may be approximately true in other situations. However, when the predictor
distributions heavily violate this sufficiency assumption, one can still conduct
PCA, but the resulting components may not be as informative.
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C. High variance indicates importance. Another fundamental assumption we made
when describing the PCA procedure is that the eigenvalues λi, which represent
the variability in the data “explained by” or associated with with the ith princi-
pal component, measure the importance of that component. This is intuitively
reasonable, since components corresponding to low variability likely say little
about the data, it need not always be true.

D. Principal components are orthogonal. When conducting PCA, we explicitly
sought orthonormal eigenvectors as our principal components. We did not need
to make such an assumption, and it may not be true that the “intrinsic dimen-
sions” are orthogonal. However, this allowed us to use techniques from linear
algebra such as the spectral decomposition, and thereby simplify our calcula-
tions.

Thus, while most of the assumptions appear plausible, they must be checked
in practice before drawing any strong conclusions from PCA. Let us assess which
assumptions are fundamental and which are technical. Assumption A is inherent in
PCA, as a matrix-based method. Unfortunately, it is also one of the most limiting
aspects of PCA. If the data are confined to a subspace, then linear methods will
suffice. However, if the data are on some (nonlinear) manifold in the space, as
put forth by the manifold hypothesis, then linear methods are doomed to fail in
general, and we must turn to nonlinear methods (as we do in Section 5).

Assumption B can be problematic, but unlike Assumption A, it can be more
easily verified. For example, if any of the predictors appear to be heavily skewed,
then the first two moments (mean and variance) are likely insufficient to describe
the distribution, and thus PCA may not be very informative. In such a case, a
transformation of certain problematic predictor variables (for example, by taking
the logarithm) can be an adequate solution. Of course, one should ideally examine
the joint distribution of the predictors, but this can be difficult in high-dimensional
situations.

Finally, Assumptions C and D are not necessarily data-dependent, but rather
method-dependent: that is, we make these assumptions as a way to understand
the data, and they are not intrinsic to the data itself. Using metrics other than
variability and allowing non-orthogonal components are not inherently nonsensical
or antithetic to PCA; they will simply yield different methods and solutions to the
problem of dimensionality reduction.

4. Multidimensional Scaling and Other Linear Dimensionality
Reduction Methods

As noted above, PCA is a linear dimensionality reduction method that is based
on a certain objective (maximizing variances and minimizing covariances), and
substituting other metrics to be optimized yield different methods.2 Rather than
maximizing variances, one may want to instead find lower-dimensional represen-
tations of X that preserve the pairwise distances between the observations. This
leads to the method of multidimensional scaling, or MDS.

As usual, suppose that we have n observations {x1, . . . , xn‖ ⊂ Rp, each of which
are p-dimensional. Also, define a distance function between observations dij =
d(xi, xj), such that it is a metric. Namely, it is symmetric (dij = dji), and has the

2For more information regarding methods in this section and the next, we refer the reader to

Saul et al. (2005) [1].
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property that dii = 0 and dij > 0 if i 6= j. Often, we will consider the Euclidean
distance as our metric, so that d(xi, xj) = ‖xi − xj‖22. One can verify that the
Euclidean distance satisfies all properties necessary to be a metric.

We can the construct the distance matrix D, defined as

D ≡


0 d12 · · · d1n
d21 0 · · · d2n
...

...
. . .

...
dn1 dn2 · · · 0


where the diagonal terms are zero by definition of the metric. In addition, we can
consider a lower-dimensional representation {y1, . . . , yn} = {g(x1), . . . , g(xn)} ⊂ Rd

for d < p, and the associated distance matrix. We refer to the original distance
matrix as DX and the distance matrix associated with the lower-dimensional rep-
resentation as DY ; note that both matrices are of dimension n× n.

One criterion for ensuring that the lower-dimensional representation is faithful
to the original data is to preserve the distances between the observations. Thus, in
MDS, one seeks to find a representation such that

min
g

n∑
i,j=1

(dXij − dYij)2

where g is the transformation that yields y.
There are a number of ways one can use this framework for dimensionality re-

duction, but here we focus on the Euclidean case. In this situation, the following
lemma connects the distance matrix to the Gram matrix.

Lemma 4.1. The distance matrix D for observations {x1, . . . , xn} and Euclidean
metric d(xi, xj) = ‖xi − xj‖22 satisfies

XXT = −1

2
HDH

where H = In − n−111T and 1 is the vector of all ones.

With this lemma, we can express the above minimization problem in terms of
inner products as follows

min
g

n∑
i,j=1

(xTi xj − yTi yj)2

and it can be shown that the solution to this problem is given by Y = Λ1/2V T

where V is the matrix of eigenvectors corresponding to the largest d eigenvalues of
XXT , and Λ is the diagonal matrix of those eigenvalues (and zero otherwise).

However, note from Proposition 1.4 that, in fact, the largest d eigenvalues of
XXT are exactly the largest d eigenvalues of XTX. Thus, despite approaching
the problem from a completely different criterion, MDS actually yields the same
dimensionality reduction as PCA. Thus, it is also a linear dimensionality reduction
technique (if we use Euclidean distance as our metric) and suffers from the same
drawbacks and assumptions as PCA.
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5. Nonlinear Dimensionality Reduction Techniques

To surmount the linearity assumptions of PCA and MDS, there are, by now, a
large number and variety of nonlinear dimensionality reduction techniques, which
are also called manifold learning methods. We focus on two salient examples of
such methods, which are each based on one of the methods we have discussed.

5.1. Kernel PCA. One obvious extension to PCA that allows for nonlinear di-
mensionality reduction is to first apply a nonlinear map Φ, known as a feature
map, to the data, yielding a nonlinear representation Φ(X), then applying PCA
to this transformed data. We shall use this technique multiple times in the future.
Once we transform the data, we must find the Gram matrix in this transformed
space, which we define to be the kernel.

K ≡ Φ(X)T Φ(X)

Once we have achieved this, we can conduct PCA on this Gram matrix, just taking
care to ensure that the columns have mean zero. This yields the kernel PCA
method for nonlinear dimensionality reudction.

Note that we cannot simply standardize each column as before, since that does
not conform to the transformation above. Instead, we must modify the feature map
itself

Φ̃(X) = Φ(X)− Ex[Φ(X)]

and compute the modified kernel K̃ ≡ Φ̃(X)T ˜Φ(X).

5.2. Isomap. Similarly to the case of kernel PCA, one can extend MDS to the
nonlinear setting by using a non-Euclidean distance metric. One widely-used al-
ternative yields a technique called Isomap. The exact same MDS objective is
minimized as before (minimizing the difference in pairwise distances between the
original points and the transformed representation). However, we employ a differ-
ent, particular distance metric d(xi, xj).

To construct this metric, one first constructs the k-nearest neighbors (KNN)
graph of the data. This entails employing the KNN method on the data, and
constructing a graph in which the data points are the nodes, and an undirected
edge {i, j} indicates that xi, xj are one of each other’s k-nearest neighbors. Then,
one can use a shortest-paths algorithm (such as Djikstra’s algorithm) to compute
the shortest geodesic distance between pairs of observations. That is, dij = d(xi, xj)
indicates the length of the shortest path between xi and xj in this nearest neighbors
graph.

Finally, one can use a standard optimization algorithm or an eigendecomposition
of the distance matrix DX to find the representations Y . This step is identical to
that of MDS, and it is noted that one can use the number of “large” eigenvalues of
DX to determine the dimensionality of the representation.

References

[1] Saul, L. K., et al. (2006). “Spectral Methods for Dimensionality Reduction.” Semisupervised

Learning: 293-308.

[2] J. Jauregui (2012). “Principal Component Analysis with Linear Algebra.”
[3] J. Shlens (2003). “A Tutorial on Principal Component Analysis.”


