
From the MLE to the AIC   

Notation Used   

Let us establish some notation here. Your chances of having two practitioners agree on notation is less
than your chances of making money when someone sends you an email asking you to deposit their
cash.

We will denote the true distribution of data, as seen on an infinitely large population by . The estimate
of this distribution on a sample, will be denoted, appropriately for estimates, by . Now, if you were not
told the true distribution, you might attempt to approximate it within some distribution family like
normals. We shall denote this distribution, if you attempted to fit in on the population, . Once again, in
real life, you are not given a population, so you attempt to find the distribution on a sample, which we
shall denote by .

What distributions are we talking about? This is completely general, it could be the distribution of
heights and weights in the human population, or a likelihood distribution (see below) for a ordinary
linear regression.

Finally we'll denote a true model by the function . This for example could be the probability of voting
republican based on your income. It might be a complex function, such as a probit. We'll denote a
function (such as a regression function) which you estimate on a sample of your population as  or .
This could be a polynomial in income, keeping with our example.

Finally, we'll denote the dataset from your sample as .

Choosing a parametric model   

When we do data analysis in a parametric way, we start by characterizing our particular sample
statistically then, using a probability distribution (or mass function). This distribution has some
parameters. Lets refer to these as θ.



If we assume that our data was generated by this distribution, then the notion of the true value of the
parameter makes sense. Now, usually in life, there is no way of knowing if this was the true generating
process, unless we have some physics or similar ideas behind the process. But lets stick with the myth
that we can do this. Then let us call the true value of the parameters as .

To know this true value, we’d typically need the entire large population, not the sample we have been
given as data. So the best we can do us to make a parameter estimate  from the data. In the context of
frequentist statistics, the assumption is that the parameters are fixed, and that there is this true value (
), and that we can make some estimate of this from our sample ( ).

A distribution is induced on this estimate by considering many samples that could have been drawn
from the population…remember that frequentist statistics fixes the parameters but considers data
stochastic. This distribution is called the sampling distribution of the parameter θ. (In general a
sampling distribution can be considered for anything computed on the sample, such as a mean or
variance or other moment).

Our question is: how do we estimate . So far we have seen the idea of estimating OLS parameters using
the method of least squares, but this seems to be an idea very specific to regression.

This question is tackled by the Maximum Likelihood Estimate, or MLE.

Lets learn about the MLE in the context of a particular distribution, the exponential.

The idea behind the MLE   

The diagram below illustrates the idea behind the MLE.



Consider two distributions in the same family, one with a parameter, lets call it , of value 1.8 (blue) and
another of value 5.8. (green). Let's say we have 3 data points, at .

Maximum likelihood starts by asking the question: conditional on the fixed value of , which
distribution is the data more likely to have come from?

In our case the blue is more likely since the product of the height of the 3 vertical blue bars is higher
than that of the 3 green bars.

Indeed the question that MLE asks is: how can we move and scale the distribution, that is, change ,
until the product of the 3 bars is maximised!

That is, the product

gives us a measure of how likely it is to observe values  given the parameters . Maximum
likelihood fitting consists of choosing the appropriate "likelihood" function  to maximize
for a given set of observations. How likely are the observations if the model is true?

Often it is easier and numerically more stable to maximise the log likelyhood:

The exponential distribution occurs naturally when describing the lengths of the inter-arrival times in a
homogeneous Poisson process.

It takes the form:

In the case of the exponential distribution we have:

Maximizing this:

and thus:

which is the sample mean of our sample. Usually one is not so lucky and one must use numerical
optimization techniques.



A crucial property is that, for many commonly occurring situations, maximum likelihood parameter
estimators have an approximate normal distribution when n is large.

Linear Regression MLE   

Linear regression is the workhorse algorithm thats used in many sciences, social and natural. The
diagram below illustrates the probabilistic interpretation of linear regression, and the idea behind the
MLE for linear regression. We illustrate a point , and the corresponding prediction for  using
the line, that is  or .

The fundamental assumption for the probabilistic analysis of linear regression is that each  is gaussian
distributed with mean  (the y predicted by the regression line so to speak) and variance :

We can then write the likelihood:

Given the canonical form of the gaussian:

we can show that:



The log likelihood  then is given by:

Upto a constant which does not matter for derivatives, this is just the negative cost/error/risk function
we had from least squares.

If you differentiate this with respect to  and , you get the MLE values of the parameter estimates:

where  is the design matrix created by stacking rows , and

These are the standard results of linear regression.

Information Theory: KL Divergence   

The problem of learning a model can be cast in the following form: suppose nature has a true
"population" distribution . As usual I am given a sample, and make my effort learning a distribution
from this sample, . Our question then is: how good did i do? And what additional uncertainty did I
introduce by using  instead of ? And how does this  vary with potentially different samples that may
be drawn from the population (something we might be only able to accomplish via a bootstrap).

In other words, if  is nature's distribution, we want to know how far we are from "perfect accuracy" by
using . In other words we need to develop a distance scale for distances between distributions.

This scale is called the Kullback-Leibler (KL) Divergence, introduced in 1951. It is defined thus:

The distance between a distribution and itself is clearly .

We can use Jensen's inequality for expectations on a convex function ,

to show that  with equality iff (if and only if) .



where we have used the fact that  is a convex function, and that  normalizes to a
distribution. Infact, since  is strictly convex, the equality only happens if  for ALL x.

Likelihoods and model comparison   

When we minimize risk or maximize likelihood, we do it by taking a sum of risks on a point wise basis,
or by multiplying likelihood distributions on a point wise basis.

We have not really justified that yet, but we do it because its (a) intuitive and (b) we have an intuitive
justification at the back of our mind of using the law of large numbers on a sample.

That is, we approximate the true population distribution  by a sample-based empirical distribution:

where we have used the dirac delta function.

Then we have, on our sample :

where we have used the  to denote the sample average.

Maximum Likelihood justification   

Thus minimizing the KL-divergence involves maximizing  which is exactly the log
likelihood. Hence we can justify the maximum likelihood principle.

Comparing Models: from Divergence to Deviance   

By the same token we can use the KL-Divergences of two different models to do model comparison:

If you look at the expression above, you notice that to compare a model with distribution  to one with
distribution , you only need the sample averages of the logarithm of  and :



If we define the deviance:

,

(that is, the log-likelihood upto a -2 factor ), then

so that we can use the deviance's for model comparison instead.

Notice that deviance is just a negative log likelihood, or risk. For the case of linear regression, we have
the log likelihood as

and thus the deviance  is given by

Since we learn a  on a given sample, and replace expectations with respect to  by sums on the sample (
, note that our KL-divergences and thus deviances are stochastic objects, varying from one sample to

another.

But we are still in-sample: the AIC   

When we use the empirical distribution and sample quantities here we are working with our training
sample (s).

Clearly we can calculate deviance on the validation and test samples as well to remedy this issue. And
the results will be similar to what we found in lecture for MSE, with the training deviance decreasing
with complexity and the testing deviance increasing at some point.

McElreath, in Rethinking Statistics, has a plot of this for data generated from a gaussian with standard
deviation 1 and means:



This analysis is reproduced in your notebook for this section. The deviances in-sample (training) and
out-of sample (testing), at 10,000 simulations for each model type, for two sample sizes are shown
below.

Why do we do 10000 simulations? These are our multiple samples from some hypothetical population.

Notice:

the best fit model may not be the original generating model. Remember that the choice of fit depends 
on the amount of data you have and the less data you have, the less parameters you should use
on average, out of sample deviance must be larger than in-sample deviance, through an individual 
pair may have that order reversed because of sample peculiarity.

Now when one plots the mean deviances together, we see an interesting phenomenon:



The test set deviances are  above the training set ones, approximately, where  is the number of
parameters in the model.

This observation leads to an estimate of the out-of-sample deviance by what is called an information
criterion, the Akaike Information Criterion, or AIC:

which does carry as assumptions that

1. the likelihood is approximately multivariate gaussian
2. the sample size is much larger than the number of parameters
3. priors are flat 
4. The AIC does not assume that the true data generating process  is in the set of models being fitted. 

The overarching goal of the AIC approach to model selection is to select the "best" model for our 
given data set without assuming that the "true" model is in the family of models from which we're 
selecting. The true model "cancels out" except in the expectation.

We wont derive the AIC here, but if you are interested, see
http://www.stat.cmu.edu/~larry/=stat705/Lecture16.pdf

Why would we want to use such information criteria? Cross validation can be expensive, especially
with multiple hyper-parameters.

The Bias-Variance Tradeoff   

We are now in a position to understand the Bias-Variance tradeoff well. To start, let us derive the AIC for
the linear regression model.

AIC for linear regression   

The AIC for a model is the training deviance plus twice the number of parameters:

That is, -2 times the log likelihood of the model.

So, one we find the MLE solution for the linear regression, we plugin the values we get, which are

where RSS is the sum of the squares of the errors.

http://www.stat.cmu.edu/~larry/=stat705/Lecture16.pdf


Thus:

Since the deviance for a OLS model is just proportional to the log(MSE) upto a proportionality, we'll use
the MSE to derive this split.

The fact that the (log-likelihood) and thus the deviance carries an expectation over the true distribution
as estimated on the sample means that the Deviance is a stochastic quantity, varying from sample to
sample.

Bias and Variance   

We have so far informally described two different concepts in class: bias and variance. Bias is
deterministic error, the kind of error you get when your model is not expressive enough to describe the
data. Variance describes the opposite problem, where it is too expressive.

Every model has some bias and some variance. Clearly, you dont want either to dominate.

Let us mathematically understand what bias and variance are, so that we can use these terms more
precisely from now onwards.

In general, the risk of approximating a "true" model  by an approximate model  (for example a
polynomial regression) is

Note that  and  are functions here, not distributions, and  in particular here could be, for example, a
polynomial regression function.

In the presence of noise  which we shall assume to be 0-mean, variance  noise, we have 
and the above formula becomes:

Let us fit on our training set. We come up with a best fit hypothesis , where  is our training
sample. Then the risk



Let us compute the expectation of this quantity with respect to the sampling distribution obtained by
choosing different samples from the population. Note that we cant really do this if we have been only
given one training set, but lets assume we have had access to the population and can thus experiment.

Define:

Define:

as the average "g" over all the fits (M of them) on the different samples, so that we can write, adding and
subtracting :

Thus:

The first term here is called the variance, and captures the squared error of the various fit g's from the
average g, or in other words, the hairiness. This is the reason for the error bars in the deviance plots
above.

The second term is called the bias, and tells us, how far the average g is from the original f this data
came from. This is an error that we get because our predictive model is incorrect i.e. the parameter space 
 doesn't match the "true" parameter space .

Finally the third term is the stochastic noise, the minimum error that this model will always have.

Note that if we set the stochastic noise to 0 we get back the noiseless model we started out with. So even
in a noiseless model, we do have bias and variance. This is because we still have sampling noise in such
a model, and this is one of the sources of variance.

Understanding the deviance diagram with the AIC   



Now we are equipped to understand this diagram completely. Lets focus on the training (in) set first:
blue points.

1. There is some irreducible noise which contributes to the deviance no matter the number of 
parameters.

2. If we could capture the true model exactly there would be no bias, and the deviance would go to that 
which comes from the irreducible noise.

3. But we cant, so the positions of the circles tells us how much bias plus irreducible noise we have
4. The error bars now tell us our variance, since they tell us how much our deviance, or MSE varies 

around our "mean" model. In real life our sample will lie somewhere along this error bar.
5. The training set deviances go down as the number of parameters increase. The test set deviances go 

down and then go up
6. Notice that testing deviance is higher on a 2 parameter model than on a 1, even though our 

generating "true" model is a 2 parameter one. Deviance and the AIC do not pick the true model, but 
rather the one with the highest predictive accuracy.

7. And this depends on data size, which is why you see 1 predictor doing netter in the N=20 case. This 
is also why the  errors are larger in the N=20 case.

8. The AIC represents an additional bias correction we need to add to the in-sample case. We are biased 
as we have used the training set twice: once to get the MLE estimates, and once to calculate the 
deviance.
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