Visualization for Communication
 cs109a

(CNN)
the previous day...
MTI Assessment of Temperature Concern on SRM-25 (51L) Launch
0 Calculations show that Srm-25 o-rings will be 20° colder than SRM- 15 o-rings
0 Temperature data not conclusive on predicting primary o-ring bloh-by
0 Engineering assessment is that:
0 COLDER O-RINGS WILL have increased Effective durometer ("harder")
0 "harder" o-rings will take longer to "seat"
0 more gas may pass primary o-ring before the primary seal seats (relative to SRM-15)
0 demonstrated sealing threshold is 3 times greater than $0.038^{\prime \prime}$ erosion experienced on SRM-15
0 if the primary seal does not seat, the secondary seal will seat
0 pressure will get to secondary seal before the metal parts rotate
0 O-RING PRESSURE LEAK CHECK PLACES SECONDARY SEAL IN OUTBOARD position which minimizes sealing time
0 MT1 recommends STS-51L launch proceed on 28 January 1986
0 SRM-25 will not be significantly different from SRM-15

MORTONTHIOKOL.INC.
Wasatch Division
mFormation ow this paoe was prepared to suppont aw omal phesentanion
AND CANNOT BE CONSIDERED COMPLETE WITHOUT TME ORAL DISCUSSION

Less than 1 second after ignition, a puff of smoke appeared at the aft joint of the right booster, indicating that the O-rings burned through and failed to seal. At this point, all was lost.

On the launch pad, the leak lasted only about 2 seconds and then apparently was plugged by putty and insulation as the shuttle rose, flying through rather strong cross-winds. Then 58.788 seconds after ignition, when the Challenger was 6 miles up, a flicker of flame emerged from the leaky joint. Within seconds, the flame grew and engulfed the fuel tank (containing liquid hydrogen and liquid oxygen). That tank ruptured and exploded, destroying the shuttle.

As the shuttle exploded and broke up at approximately 73 seconds after launch, the two booster rockets crisscrossed and continued flying wildly. The right booster, identifiable by its failure plume, is now to the left of its non-defective counterpart.

The flight crew of Challenger 51-L. Front row, left to right: Michael J. Smith, pilot; Francis R. (Dick) Scobee, commander; Ronald E. McNair. Back row: Ellison S. Onizuka, S. Christa McAuliffe, Gregory B. Jarvis, Judith A. Resnik.

history of o-Ring damage on sre field joints

*Hot gas path detected in putty. Indication of heat on 0-ring, but no damage
**Soot behind primary 0-ring
***Soot behind primary 0 -ring, heat affected secondary 0 -ring.
Clocking location of leak check port - 0 deg.
Engineer deck, the previous day.
Other SRM-15 field Joints had no blowholes in putty and no soot NEAR OR BEYOND THE PRIMARY O-RING.
SRM-22 FORWARD FIELD JOINT HAD PUTTY PATH TO PRIMARY O-RING, BUT NO O-RING EROSION AND NO SOOT BLOWBY, OTHER SRM-22 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY.

BLOW By HISTDRY SRM-15 WORST BLOW-BY 02 CASE Joints $\left(80^{\circ}\right),\left(110^{\circ}\right)$ ARCC - MUCH WORSE VISUALLY THAN SRM-22	MOTOR	HISTORY OF O-RING TEMPERATURES(DEGREES - F)			
		MBT	$A M B$	O-RING	WIND
	Dm-4	68	36	47	10 mPH
	$D m-2$	76	45	52	10 MPH
SRM 22 B<OW-bY	Qm-3	72.5	40	48	10 mPH
- 2CASE vOINTS (30-40)	Qm-4	76	48	51	10 mPH
	SRM-15	52	64	53	10 mPH
SRM-13A, 15, 16A, 18, 23A 24A - NOZZLE BLOW-BY	SRM-22	77	78	75	10 mPH
	SRM-25	55	26	29	10 mPH
				27	25 mPH

CONCLUSIONS:

- TEMPERATURE OF O-RING IS NOT ONLY PARAMETER CONTROLLING BLOW - BY

SRM IS WITH BLOW.BY HAD AN O-RING TEMP AT $53^{\circ} \mathrm{F}$ SRM 22 with BLow-BY HAO ANS O. KMG TEMP AT $75^{\circ} F$ Four DEVELOPMENT MOTORS WITH NO BLOW- BY FOUR DEVELOPMENT MOTORS WITH NO BLOW" BY ${ }^{\circ}$ TERE TESTED AT O-RING TEMP OF 47° T. 52 \%

DEVELOPMENT MOTORS HAD PUTTY PACKING WHICH RESULTED IN BETTER PERFORMANCE

- AT ABOUT $50^{\circ} F$ BLOW-BY COULD BE EXPERIENCED IN CASE JeINTS
- TEMP FOR SRM 25 ON $1-2 B-86$ LAUNCH WILL BE $29^{\circ} \mathrm{F} \quad 9 \mathrm{AM}$

O HAVE NO DATA THAT WOULD INDICATE SRM 25 IS DIFFERENT THAN SRM 15 OTHER THAN TEMP

RECOMMENDATIONS :

```
* O-RING TEMP MUST BE \geq53 *}\textrm{F}\mathrm{ \AT LAUNCH
    DEVELOPMENT MOTORS AT 47% TO 52*F WITH
    PUTTY PACKING HAD NO BLOW-BY
    SRM IS (THE BEST SIMULATION) WORKED AT S3 %F
- PROJECT AMBIENT CONDITIONS (TEMP & WIND)
    TO DETERMINE LAUNCH THME
```

(PCSSCA)

O-Ring Temp
($\left.{ }^{\circ} \mathrm{F}\right)$

Chartjunk at hearings

STATIC TEST MOTORS

- horizontal assembly
- some putty repaired

History of O-Ring Damage in Field Joints (Cont)

Visualization Goals

Communicate (Explanatory)

Present data and ideas
Explain and inform
Provide evidence and support
Influence and persuade

Analyze (Exploratory)

Explore the data
Assess a situation
Determine how to proceed
Decide what to do

Communicate

755
Steroids or Not, the Pursuit Is On
Barry Bonds is takng aim at the carese home run record. He
only six more to 10 Rato Ruth and 47 to squal Hank Aaron
Lines are curnulative home runs

$\underbrace{1}_{\substack{\text { Hank } \\ 755 ~ h \\ 23 \\ 23}}$
Hank Aaro
755 homens
755 homers
23 scawons
Bober
Babe Ruth
714 homers
22 seasons

Barry
708 hh
20 sea

1
10

Advance, Group 2

Advance, Group 3

Retreat, Group 2

Napoleon's March to Russia

Next, the temperature experienced by his troops when winter settled in on the return trip.
emperature During The Retreat

Minard's Graphic on Napoleon's Russia Campaign

(from wikipedia)

Minard's Graphic on Napoleon's Russia Campaign

Figurative Map of the successive losses in men of the French Army in the Russian campaign $1812 \sim 1813$ Drawn by M. Minard, Inspector General of Bridges and Roads (retired). The numbers of men present are represented by the widths of the colored zones at a rate of one millimeter for every ten thousand men. they are fur ther written across the zones. The red designates the men who enter Russia, the black those who leave it. _ _ The information which has served to draw up the map has been extracted from the works of M.M. Thiers, de Ségur, de Fezensac, de Chambray and the unpublished diary of Jacob, the pharmacist of the Army since October 28th. In order to better judge with the eye the diminution of the army, I have assumed that the troops of Prince Jérôme and of Marshal Davout, who had been detached at Minsk and Mogilev and have rejoined near Orsha and Vitebsk, had always marched with the army.

been detached at Minsk and Mogilev and have rejoined near Orsha and Vitebsk, had always marched with the army.

(from wikipedia)

Key Considerations

- Who is your audience?
- What questions are you answering?
- Why should the audience care?
- What are your major insights and surprises?
- What change to you want to affect?

Effective Visualizations

I. Have graphical integrity
2. Keep it simple
3. Use the right display
4. Use color strategically
5. Know your audience

WRONG

CITIZENS TRUMP

THE INSIDE STORY
OF THE PEOPLE S MOVEMENT TO TAKE BACK AMERICA
$\star \star \star \star \star$
JACK POSOBIEC

RIGHT

COUNTIES orn $^{\text {on }}$ TRUMP

THE INSIDE STORY
OF 46\% OF VOTERS' MOVEMENT TO TAKE BACK AMERICA
$\star \star \star \star \star$
JACK POSOBIEC

The Persuasive Power of Data Visualization

Anshul Vikram Pandey
New York University
Anjali Manivannan
New York University
Oded Nov
New York University
Margaret L. Satterthwaite
NYU School of Law, satterth@exchange.law.nyu.edu
Enrico Bertini
New York University

After looking into common effects in attitude formation and change we searched for specific mentions to the graphical appearance of charts as a driver for persuasion. Some of the comments we collected seem to back up the findings we found in our results. Some participants explicitly mention the charts as being the main reason for their change: "I already knew that increased incarceration didn't lower crime, but I wasn't sure of the statistics. To see it on the graphs is really eye opening."; "I was influenced by the bar graph showing the reasons why the survey respondents played video games."; "I would not know exact numbers on this issue - the graphs gave a visual and helped identify the numbers"; "Seeing the graphs conflicted with my previous opinion, so I feel like I need to reevaluate my stance in a way."

It is also important to mention that the graphical appearance of charts is not the only factor that has a strong impact on people's attitude. In our collected feedback, we found numerous references to statistics and numbers, suggesting that mere exposure to data does have a persuasive effect - maybe at least partially due to the increased sense of objectivity evidence supported by numbers carries. We found comments like: "It was concrete data that seemed compeling.; "Seeing numbers is a good indicator of change rather than just reading what someone has to say"; "It showed a large amount of different sources, which made it more credible". More research is needed to disentangle what kind of specific effects each of these components have on persuasion.
http:///sr.nellco.org/cgi/viewcontent.cgi?article=|476\&context=nyu plltwp

[^0]
Keep it Simple

Don't Make Them Think!

- Your audience does not want to spend cognitive effort on things you know and can just show them
- Lead them through the major steps of your story
- Point out interesting key facts and insights using captions and annotations

Don't Bury the Lead

How satisfied have you been with each of these features?

■ Have not used " Not satisfied at all "Not very satisfied " Somewhat satisfied " Very satisfied " Completely satisfied

Don't Bury the Lead

User satisfaction varies greatly by feature

Use the right display

Most Effective

Less Effective

Possible solution to cases when you have data that diverge a lot

Use color strategically

Colors for Categories

Do not use more than 5-8 colors at once

Colors for Ordinal Data

Vary luminance and saturation

Zeilis et al, 2009,"Escaping RGBland: Selecting Colors for Statistical Graphics"

Colors for Quantitative Data

Rainbow Colormap

Rainbow Colormap

Colormap evaluation: jet

Gray

Colormap evaluation: gray

Color Blindness

Protanope

Deuteranope

Tritanope
Blue / Yellow deficiency

Color Blindness

Normal

Protanope

Deuteranope

Lightness

Viridis

Colormap evaluation: option_d.py

Color Brewer

Know your audience

- What do they know?
- What motivates them? What do they desire?
- What experiences do you share? What are common goals?
- What insights can you give them? What tools and "magical gifts"?

What is the message?

Exploratory
 Neutral

Explanatory
Opinionated

Iraq's bloody toll

Iraq: Deaths on the Decline

Framing - Why should I care?

- Tell the audience: "Here is the right way to think about the problem I was trying to solve."
- Catch the audience's attention and frame the story using captions and annotations
- If done well, your insights will seem obvious given this framing. And that's a good thing!

Gun Deaths in 2010

U.S. GUN KILLINGS IN 20102013

414,046
 STOLEN YEARS ${ }^{\text {? }}$

Tools for interactive graphics

- R/shiny
- plotly/dash
- Tableau
- d3.js
- vega-lite/vega

Is there a story?

Surface it....even if it is incomplete

2014 Gun Deaths

PET PEEVE \#208:
GEOGRAPHIC PROFLE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

Figure 1: Percent of murders

Per capita sales by county
Annual gun sales per 100,000 residents are generally higher in California's rural and northern counties.

Deaths by county, 2014
(crimeresearch.org)

Whether Crime Is Up or Down Depends on Data Being Used

The news from the F.B.I. crime data was alarming: The murder rate rose sharply last year, driven by jumps in several major cities.

Four urban areas - Baltimore, Chicago, Milwaukee and Washington accounted for about a fifth of the increase in homicides in 2015. Those cities, however, make up only about 1 percent of the nation's population.

But whether crime is up or down depends on what data is being looked at and who is doing the looking.

The F.B.I. data showed that violent crime rose about 4 percent last year from 2014, and homicides increased 10.8 percent. Yet crime over all fell in 2015 for the 14th consecutive year.

And the total number of homicides last year was fewer than 20 years ago even as the country's population increased, criminologists said. There were 19,645 homicides in 1996 in a nation of 265 million; in 2015, there were 15,696 in a population of 321 million.

What that data means, criminologists and police officials said, is that the decline in homicides has been so significant in the last quarter century that sudden increases in the number of killings in just a few cities can skew the entire national picture, even as the country has one of its safest periods on record.

"It isn't a national trend, it's a city trend, and it's not even a city trend, but a problem in certain neighborhoods," said Richard A. Berk, a professor of statistics and criminology at the University of Pennsylvania. "Certainly, people around the country should not be worried. People in Chicago shouldn't be worried. But people in certain neighborhoods might be."

Criminologists and police officials point out that homicides do not usually disrupt entire cities. Instead, they occur in particular neighborhoods - and on the same blocks - leaving much of the rest of the city relatively untouched.

Explanations for the increase in homicides in certain American cities are largely guesswork. Criminologists acknowledge that the required analysis has not been done in the neighborhoods where killings are occurring - or even an agreement of what such a study should include - to arrive at any but the broadest conclusions.

Careful with amalgamation paradoxes and with outliers

http://journal.frontiersin.org/article/10.3389/fpsyg.2013.00513/full

Ask Ask Ask

- Is the exact distribution of guns really the important concern?
- did we check the uncertainties?
- Should we be looking at this from a "risk" perspective?
- we tend to believe what we believe and look for confirmation.
- we need to be disciplined about interrogating ourselves
- it is ok (and not against simplicity) to surface our process
a woman's age vs. the age of the men who look best to her

Alberto Cairo•University of Miami • www.thefunctionalart.com•Twitter: @albertocairo
a man's age vs. the age of the women who look best to him
2020

21	$20 \because$
22	21
23	21
24	21
25	21
26	22
27	21

2820
2920
3020
31 20
3220
3320
3420
3520
3620
$37 \quad 22$
3820
3920
$40 \quad 21$
$41 \quad 21$
4220
$43 \quad 23$
44 21
$45 \quad 24$
4620
4720
$48 \quad 23$
4920
$50 \quad 22$

Alberto Cairo•University of Miami • www.thefunctionalart.com•Twitter: @albertocairo

Sample of 100 men of 40 vs. the age of the women who look best to them

= I of men

$\begin{array}{lllll}20 & 25 & 30 & 35 & 40 \\ \longleftarrow & & & \text { Women's ages }\end{array}$

Sample of 100 men of 40 vs. the age of the women who look best to them

- =I of men

Structure of communication graphics

Steroids or Not, the Pursuit Is On

Earry Eonds is tamp am at the crear homern recoed the raody only pock more to se Babe Rah and 47 is eoall riank Aam

Hank Aaron 755 homent 23 sensoess

$-$

Belve Ruth 714 homers 22 measces
 20 swasens

1
10

20 semasta

Bonot was enurod last season the pleyod 14 games and $\mathrm{A} / 6$ homers

Homer Pace After Age 34

It the acousatons are corroct, Bonch wan 34 nhs int 3emon on stercibs Here are propexd tiomeron paces ICr eoch plowe ahar age 34
morcicorncr 0etio O4

Nots iges as oflely f of eash somen

$$
\begin{aligned}
& \text { Aarce } \\
& \text { Achual homer } \\
& \text { slighty } \\
& \begin{array}{l}
\text { outouce } \\
\text { propected }
\end{array} \\
& \text { pronctod } \\
& \begin{array}{l}
\text { Romers } \\
\text { thations }
\end{array}
\end{aligned}
$$

Accoroing to alopasions in a book about einots. ho hogan seiving sturvise Defery the ny9? sasson his fiks in 5 c hagun Iwo masaons later he he 73 home Mint turpatsing Aarcns cavor pace

Hell Aroo 736	$\frac{\mathrm{ML}}{\mathrm{x} 4} \text { R.an }$	nany Buch		$\text { Sming } 50$	Froel Rolinem 568	$\begin{aligned} & \text { Mwh M.Culie } \\ & \text { S\&s } \end{aligned}$	$\mathrm{K}_{\mathrm{Sos}}^{\mathrm{K}} \text { Gillto } \mathrm{Je} \text {. }$	Nor Rolipes 42	Allest Ripl. 26
* cassuove \%	-in in in	is (x) 0	¢ 0is \%	* un is	is 00 4	ขง 0 - ${ }^{\text {a }}$	क) 0 - ${ }^{\text {s }}$	\% as is	in in 80
15 smesht 32 or mote(ML mos)	Hit only 20 oves first lve susons.	Averaged settm 2050 to 2004	Nis one he more tom 1960-69	Trree 60.bomer swascrs s tecord	Triole Crown in 66 (69, 122, 316)	Frst tohe 70 in a season	Only McOwre had morentw 90\%	Youngestts reach 400 homers	Second most ever in frst hae seasors

Albert Pujolv
Averagng 45 nomors a season he has starwed stepnger timp tre tres lasbers did

Ken Griffey Jr.
Many troughe he would be the tret to catth Run and Aaron Uft nenos Imad his oulput

WHERE THERE'S SMOKE-THERE'S CANCER
Cancer rates are up, but mortality is down. New diagnostics and treatments are responsible for part of this trend. But the greatest single contributing factor is the decline in smoking-rates are at their lowest level in 50 years.
——Men \qquad Women

1 Increased incidence

An aging population contributes to rising incidence of cancer.

2 Fewer deaths

Cancer deaths have been dropping since 1991 , especially in males.Decline of lung cancer
Drop in lung cancer deaths in males is the primary reason why death rates are down.

Cancer incidence rates (per 100,000)
700

OVERALL
overall
es (per 100,000)

Since the 1964 first Surgeon General's report, smoking rates have been dropping. By 2010, the rate among males was down to 20%, from 50% at its peak. Among youths, rates have been on an even steeper decline since 1997.

Smoking is a major risk factor for many types of cancer and significant contributor to cancer-related deaths. It remains the single largest preventable cause of disease and premature death in the US.

Percentage of cancer deaths
attributable to smoking

Application to modeling

IMAC

I: inferential goal (scientific question of interest) M: model (all models are wrong, some are useful) A: algorithms
C: conclusions and checking
The C is crucial: what did we learn? Was the model useful, and how well does it fit? How do we know whether the method is working? Do we understand how it is working? Do we need to iterate and improve the model? What are the limitations and future directions?
(from Foster and Fawcett)

Which Model is Better?

Breast Cancer on a Mammogram

- False positives OK
- False Negatives are disaster
- More people dont have it

Communicating a model

Telecom Churn Problem

Survey 1000 customers, with an offer with an administrative cost of $\$ 3$ and an offer cost of $\$ 100$, an incentive for the customer to stay with us.

Want to predict for our 100000 customer base.
If a customer leaves us, we lose the customer lifetime value, which is some kind of measure of the lost profit from that customer.
Lets assume this is the average number of months a customer stays with the telecom times the net revenue from the customer per month. We'll assume 3 years and $\$ 30 /$ month margin per user lost, for roughly a $\$ 1000$ loss.

```
admin_cost=3
offer_cost=100
clv=1000 # customer lifetime value
```

- TN=people we predicted not to churn who wont churn. We associate no cost with this as they continue being our customers
- FP=people we predict to churn. Who wont. Lets associate a admin_cost+offer_cost cost per customer with this as we will spend some money on getting them not to churn, but we will lose this money.
- $\mathrm{FN}=$ people we predict wont churn. And we send them nothing. But they will.This is the big loss, the clv
- TP= people who we predict will churn. And they will.These are the people we can do something with. So we make them an offer. Say a fraction f accept it. Our cost is admin_cost + f*offer_cost + (1-f)*clv.

```
f = 0.5
tnc = 0.
fpc = admin_cost+offer_cost
fnc = clv
tpc = admin_cost + f*offer_cost + (1. - f)*clv
```

Predicted

Average Cost $=\mathrm{TN} \times$ TNC $+\mathrm{TP} \times$ TPC +
$\mathrm{FN} \times \mathrm{FNC}+\mathrm{TP} \times \mathrm{TPC}$

Predicted

Annotated Diagram

made with Preview

Reduce churn and our cost by sending customers an offer

Making offers within Budget

This study was made on a pilot survey of 1000 customers from our 100000 customer base.

Make an offer with an administrative cost of \$3 and an offer cost of \$100, an incentive for the customer to stay with us.

If a customer leaves us, we lose the customer lifetime value (CLV), a roughly \$1000 loss.

We assume that 50% of those customers targeted will stay with us.

If we do nothing we lose $\$ 150$ per customer including CLV

We choose which customers to target according to 2 different models, $\mathbf{d t}$ and gnb:

- Making an offer to 13% of our most likely to leave customers will cut this cost to a lowest value of $\$ 103$ per customer according to the dt model, for a total cost of $\$ 1.34$ million.
- If we only target 10% of the customers (Budget 1) using the $\mathbf{d t}$ model, we get by in 1.03 million but incur a loss of $\$ 110$ per customer including CLV.
- If we target 40% of our customers, we need a budget (Budget 2) of $\$ 4.2$ million. Here the gnb model performs better and we will choose customers according to it. We incur a loss of \$116 per customer including CLV.

StoryTelling

Edward Tufte

Stephen Few

the functional
 2012
 an introduction to information graphics and visualization

2016

l've always believed in the power of data visualization (the representation of information by means of charts, diagrams, maps, etc.) to enable understanding

[^0]: Alberto Cairo• University of Miami • www.thefunctionalart.com•Twitter: @albertocairo

