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Model Selection

Model selection is the application of a principled method
to determine the complexity of the model, e.g. choosing
a subset of predictors, choosing the degree of the
polynomial model etc.

A strong motivation for performing model selection is
to avoid overfitting, which we saw can happen when

▶ there are too many predictors:
– the feature space has high dimensionality
– the polynomial degree is too high
– too many cross terms are considered

▶ the coefficients values are too extreme
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Stepwise Variable Selection and Cross Validation

Last time, we addressed the issue of selecting optimal
subsets of predictors (including choosing the degree of
polynomial models) through:

▶ stepwise variable selection - iteratively building an
optimal subset of predictors by optimizing a fixed
model evaluation metric each time,

▶ cross validation - selecting an optimal model by
evaluating each model on multiple validation sets.

Today, we will address the issue of discouraging
extreme values in model parameters.
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Stepwise Variable Selection Computational Complexity

Howmany models did we evaluate?

▶ 1st step, J Models
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Stepwise Variable Selection Computational Complexity

Howmany models did we evaluate?

▶ 1st step, J Models
▶ 2nd step, J − 1Models (add 1 predictor out of J − 1
possible)

▶ 3rd step, J − 2Models (add 1 predictor out of J − 2
possible)
...

O(J2) ≪ 2J for large J
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Applications of Model Selection
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Cross Validation. Why?
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Cross Validation
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Predictor Selection: Cross Validation

Rather than choosing a subset of significant predictors
using stepwise selection, we can useK-fold cross
validation:

▶ create a collection of different subsets of the
predictors

▶ for each subset of predictors, compute the cross
validation score for the model created using only
that subset

▶ select the subset (and the corresponding model)
with the best cross validation score

▶ evaluate the model one last time on the test set
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Degree Selection: Stepwise

We can frame the problem of degree selection for
polynomial models as a predictor selection problem:
which of the predictors {x, x2, . . . , xM} should we select
for modeling?

We can apply stepwise selection to determine the
optimal subset of predictors.
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Degree Selection: Cross Validation

We can also select the degree of a polynomial model
usingK-fold cross validation.

▶ consider a number of different degrees

▶ for each degree, compute the cross validation score
for a polynomial model of that degree

▶ select the degree, and the corresponding model,
with the best cross validation score

▶ evaluate the model one last time on the test set
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kNN Revisited

Recall our first simple, intuitive, non-parametric model
for regression - the kNN model. We saw that it is vitally
important to select an appropriate k for the data.

If the k is too small then the model is very sensitive to
noise (since a new prediction is based on very few
observed neighbors), and if the k is too large, the model
tends towards making constant predictions.

A principled way to choose k is throughK-fold cross
validation.
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A Simple Example
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Behind Ordinary Lease Squares, AIC, BIC
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Likelihood Functions

We’ve been using AIC/BIC to evaluate the explanatory
powers of models, and we’ve been using the following
formulae to calculate these criteria

AIC ≈ n · ln(RSS/n) + 2J

BIC ≈ n · ln(RSS/n) + J · ln(n)

where J is the number of predictors in model.

Intuitively, AIC/BIC is a loss function that depends both
on the predictive error, RSS, and the complexity of the
model. We see that we prefer a model with few
parameters and low RSS.

But why do the formulae look this way - what is the
justification?
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Likelihood Functions

Recall that our statistical model for linear regression in vector
notation is

y = β0 +
J∑

j=1

βixi + ϵ = βββ⊤xxx+ ϵ.

It is standard to suppose that ϵ ∼ N (0, σ2). In fact, in many
analyses we have been making this assumption. Then,

y|βββ,xxx, ϵ ∼ N (βββ⊤xxx, σ2).

Can you see why?

Note thatN (y;βββ⊤xxx, σ2) is naturally a function of the model
parameters βββ, since the data is fixed. We call

L(βββ) = N (y;βββ⊤xxx, σ2)

the likelihood function, as it gives the likelihood of the observed
data for a chosen model βββ.
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Maximum Likelihood Estimators

Once we have a likelihood function, L(βββ), we have strong
incentive to seek values of βββ to maximize L.
Can you see why?

The model parameters that maximizes L are called
maximum likelihood estimators (MLE) and are denoted:

βββMLE = argmax
βββ

L(βββ)

The model constructed with MLE parameters assigns
the highest likelihood to the observed data.
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Maximum Likelihood Estimators

But how does one maximize a likelihood function?

Fix a set of n observations of J predictors, X, and a set of
corresponding response values, Y; consider a linear model
Y = Xβββ + ϵ.

If we assume that ϵ ∼ N (0, σ2), then the likelihood for each
observation is

Li(βββ) = N (yi;βββ
⊤xxxi, σ

2)

and the likelihood for the entire set of data is

L(βββ) =
n∏

i=1

N (yi;βββ
⊤xxxi, σ

2)

Through some algebra, we can show that maximizing L(βββ) is
equivalent to minimizing MSE:

βββMLE = argmax
βββ

L(βββ) = argmin
βββ

1

n

n∑
i=1

|yi − βββ⊤xxxi|2 = argmin
βββ

RSS

Minimizing MSE or RSS is called ordinary least squares.
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Information Criteria Revisited

Using the likelihood function, we can reformulate the
information criteria metrics for model fitness in very
intuitive terms.

For both AIC and BIC, we consider the likelihood of the data
under the MLE model against the number of explanatory
variables used in the model

g(J)− L(βββMLE)

where g is a function of the number of predictors J .
Individually,

AIC = J − ln(L(βββMLE))

BIC =
1

2
J ln(n)− ln(L(βββMLE))

In the formulae we’d been using for AIC/BIC, we approximate
L(βββMLE) using the RSS.
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Bias vs Variance
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Variance
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Variance
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Variance
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Bias vs Variance
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The Bias/Variance Trade-off
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Regularization: LASSO and Ridge
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Regularization: An Overview

The idea of regularization revolves around modifying
the loss function L; in particular, we add a regularization
term that penalizes some specified properties of the
model parameters

Lreg(β) = L(β) + λR(β),

where λ is a scalar that gives the weight (or
importance) of the regularization term.

Fitting the model using the modified loss function Lreg

would result in model parameters with desirable
properties (specified by R).
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LASSO Regression

Since we wish to discourage extreme values in model parameter,
we need to choose a regularization term that penalizes parameter
magnitudes. For our loss function, we will again use MSE.

Together our regularized loss function is

LLASSO(β) =
1

n

n∑
i=1

|yi − βββ⊤xxxi|2 + λ

J∑
j=1

|βj |.

Note that
∑J

j=1 |βj | is the ℓ1 norm of the vector βββ

J∑
j=1

|βj | = ∥βββ∥1

Hence, we often say that LLASSO is the loss function for ℓℓℓ1
regularization.

Finding model parameters βββLASSO that minimize the ℓ1
regularized loss function is called LASSO regression.
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Ridge Regression

Alternatively, we can choose a regularization term that
penalizes the squares of the parameter magnitudes.

Then, our regularized loss function is

LRidge(β) =
1

n

n∑
i=1

|yi − βββ⊤xxxi|2 + λ

J∑
j=1

β2
j .

Note that
∑J

j=1 β
2
j is related to the ℓ2 norm of βββ

J∑
j=1

β2
j = ∥βββ∥22

Hence, we often say that LRidge is the loss function for ℓℓℓ2
regularization.

Finding model parameters βββRidge that minimize the ℓ2
regularized loss function is called ridge regression.
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Choosing λ

In both ridge and LASSO regression, we see that the
larger our choice of the regularization parameter λ, the
more heavily we penalize large values in βββ,

1. If λ is close to zero, we recover the MSE, i.e. ridge
and LASSO regression is just ordinary regression.

2. If λ is sufficiently large, the MSE term in the
regularized loss function will be insignificant and
the regularization term will force βββRidge and βββLASSO

to be close to zero.

To avoid ad-hoc choices, we should select λ using
cross-validation.
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Regularization Methods: A Comparison
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The Geometry of Regularization
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Variable Selection as Regularization

Since LASSO regression tend to produce zero estimates
for a number of model parameters - we say that LASSO
solutions are sparse - we consider LASSO to be a method
for variable selection.

Many prefer using LASSO for variable selection (as well
as for suppressing extreme parameter values) rather
than stepwise selection, as LASSO avoids the statistic
problems that arises in stepwise selection.
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An Comparative Example
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