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Multiple Linear and Polynomial Regression

Last time, we saw that we can build a linear model for
multiple predictors, {X1, . . . , XJ},

y = β0 + β1x1 + . . .+ βJxJ + ϵ.

Using vector notation,

Y =

 y1
...
yy

 , X =


1 x1,1 . . . x1,J

1 x2,1 . . . x2,J
...

...
. . .

...
1 xn,1 . . . xn,J

 , βββ =


β0

β1
...
βJ

 ,

We can express the regression coefficients as

β̂ββ = argmin
βββ

MSE(βββ) =
(
X⊤X

)−1
X⊤Y.
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Multiple Linear and Polynomial Regression

We also saw that there are ways to generalize multiple
linear regression:

▶ Polynomial regression

y = β0 + β1x+ . . .+ βMxM + ϵ.

▶ Polynomial regression with multiple predictors

In each case, we treat each polynomial term xm
j as an

unique predictor and performmultiple linear
regression.
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Selecting Significant Predictors

When modeling with multiple predictors, we are interested in
which predictor or sets of predictors have a significant effect
on the response.

Significance of predictors can be measured in multiple ways:

▶ Hypothesis testing:

– Subsets of predictors with higher F -stats higher than 1
may be significant.

– Individual predictors with p-values smaller than
established threshold (e.g. 0.05) may be significant.

▶ Evaluating model fitness:

– Subsets of predictors with higher model R2 should be
more significant.

– Subsets of predictors with lower model AIC or BIC should
be more significant.

5



Example
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Multiple Regression with Interaction Terms
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Interacting Predictors

In our multiple linear regression model for the NYC taxi
data, we considered two predictors, rush hour indicator
x1 (in 0 or 1) and trip length x2 (in minutes),

y = β0 + β1x1 + β2x2.

This model assumes that each predictor has an
independent effect on the response, e.g. regardless of
the time of day, the fare depends on the length of the
trip in the same way.

In reality, we know that a 30minute trip covers a shorter
distance during rush hour than in normal traffic.
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Interacting Predictors

A better model considers how the interactions between
the two predictors impact the response,

y = β0 + β1x1 + β2x2 + β3x1x2.

The term β3x1x2 is called the interaction term. It
determines the effect on the response when we
consider the predictors jointly.

For example, the effect of trip length on cab fare in the
absence of rush hour is β2x2. When combined with rush
hour traffic (x1 = 1), the effect of trip length is
(β2 + β3)x2.
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Multiple Linear Regression with Interaction Terms

Multiple linear regression with interaction terms can be
treated like a special form of multiple linear regression - we
simply treat the cross terms (e.g. x1x2) as additional
predictors.

Given a set of observations {(x1,1, x1,2, y1), . . . (xn,1, xn,2, yn)},
the data and the model can be expressed in vector notation,

Y =

 y1
...
yn

 , X =


1 x1,1 x1,2 x1,1x1,2
1 x2,1 x2,2 x2,1x2,2
...

...
...

...
1 xn,1 xn,2 xn,1xn,2

 , βββ =


β0
β1
β2
β3

 ,

Again, minimizing the MSE using vector calculus yields,

β̂ββ = argmin
βββ

MSE(βββ) =
(
X⊤X

)−1
X⊤Y.
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Generalized Polynomial Regression

We can generalize polynomial models:

1. considering polynomial models with multiple predictors
{X1, . . . , XJ}:

y =β0 + β1x1 + . . .+ βMxM1

+ . . .

+ β1+MJxJ + . . .+ βM+MJx
M
J

2. consider polynomial models with multiple predictors
{X1, X2} and cross terms:

y =β0 + β1x1 + . . .+ βMxM1

+ β1+Mx2 + . . .+ β2MxM2

+ β1+2M (x1x2) + . . .+ β3M (x1x2)
M

In each case, we consider each term xmj and each cross term
x1x2 an unique predictor and apply linear regression.
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Model Selection: Overview
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Overfitting: Another Motivation for Model Selection

Finding subsets of significant predictors is an
important for model interpretation. But there is another
strong reason to model using the smaller set of
significant predictors: to avoid overfitting.

Definition
Overfitting is the phenomenon where the model is
unnecessarily complex, in the sense that portions of the
model captures the random noise in the observation,
rather than the relationship between predictor(s) and
response.

Overfitting causes the model to lose predictive power on
new data.
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An Example
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Causes of Overfitting

As we saw, overfitting can happen when

▶ there are too many predictors:
– the feature space has high dimensionality
– the polynomial degree is too high
– too many cross terms are considered

▶ the coefficients values are too extreme

A sign of overfitting may be a high training R2 or low
MSE and unexpectedly poor testing performance.

Note: There is no 100% accurate test for overfitting and
there is not a 100% effective way to prevent it. Rather, we
may use multiple techniques in combination to prevent
overfitting and various methods to detect it.
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Model Selection

Model selection is the application of a principled method to
determine the complexity of the model, e.g. choosing a
subset of predictors, choosing the degree of the polynomial
model etc.

Model selection typically consists of the following steps:

1. split the training set into two subsets: training and
validation

2. multiple models (e.g. polynomial models with different
degrees) are fitted on the training set; each model is
evaluated on the validation set

3. the model with the best validation performance is
selected

4. the selected model is evaluated one last time on the
testing set
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Stepwise Variable Selection
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Exhaustive Selection

To find the optimal subset of predictors for modeling a
response variable, we can

▶ compute all possible subsets of {X1, . . . , XJ},
▶ evaluate all the models constructed from the
subsets of {X1, . . . , XJ},

▶ find the model that optimizes some metric.

While straightforward, exhaustive selection is
computationally infeasible, since {X1, . . . , XJ} has 2J

number of possible subsets.

Instead, we will consider methods that iteratively build
the optimal set of predictors.
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Variable Selection: Forward

In forward selection, we find an ‘optimal’ set of predictors by
iterative building up our set.

1. Start with the empty set P0, construct the null modelM0.

2. For k = 1, . . . , J :
2.1 LetMk−1 be the model constructed from the best set of

k − 1 predictors, Pk−1.

2.2 Select the predictorXnk
, not in Pk−1, so that the model

constructed from Pk = Xnk
∪ Pk−1 optimizes a fixed

metric (this can be p-value, F -stat; validation MSE, R2; or
AIC/BIC on training set).

2.3 LetMk denote the model constructed from the optimal
Pk .

3. Select the modelM amongst {M0,M1, . . . ,MJ} that
optimizes a fixed metric (this can be validation MSE, R2; or
AIC/BIC on training set).

4. Evaluate the final modelM on the testing set.
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Variable Selection: Backward

In backward selection, we find an ‘optimal’ set of predictors by
iterative eliminating predictors.

1. Start with all the predictors PJ , construct the full modelMJ .

2. For k = 1, . . . , J :
2.1 LetMk be the model constructed from the best set of

k − 1 predictors, Pk .

2.2 Select the predictorXnk
in Pk so that the model

constructed from Pk−1 = Pk−1 − {Xnk
} optimizes a fixed

metric (this can be p-value, F -stat; validation MSE, R2; or
AIC/BIC on training set).

2.3 LetMk−1 denote the model constructed from the optimal
Pk−1.

3. Select the modelM amongst {M0,M1, . . . ,MJ} that
optimizes a fixed metric (this can be validation MSE, R2; or
AIC/BIC on training set).

4. Evaluate the final modelM on the testing set.
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An Example
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Cross Validation
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Cross Validation: Motivation

Using a single validation set to select amongst multiple
models can be problematic - there is the possibility of
overfitting to the validation set.

One solution to the problems raised by using a single
validation set is to evaluate each model multiple
validation sets and average the validation performance.

One can randomly split the training set into training
and validation multiple times, but randomly creating
these sets can create the scenario where important
features of the data never appear in our random draws.
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Leave-One-Out

Given a data set {X1, . . . ,Xn}, where each Xi = (xi,1, . . . , xi,J)
contains J number of features.

To ensure that every observation in the dataset is included in at
least one training set and at least one validation set, we create
training/validation splits using the leave one outmethod:

▶ validation set: {Xi}

▶ training set: X−i := {X1, . . . ,Xi−1,Xi+1, . . . ,Xn}

for i = 1, . . . , n. We fit the model on each training set, denoted f̂X−i
,

and evaluate it on the corresponding validation set, f̂X−i(Xi). The
cross validation score is the performance of the model averaged
across all validation sets:

CV (Model) =
1

n

n∑
i=1

L
(
f̂X−i

(Xi)
)
,

where L is a loss function.
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K-Fold Cross Validation

Rather than creating n number of training/validation splits, each
time leaving one data point for the validation set, we can include
more data in the validation set using K-fold validation:

▶ split the data intoK uniformly sized chunks, {C1, . . . , CK}

▶ we createK number of training/validation splits, using one of
theK chunks for validation and the rest for training.

We fit the model on each training set, denoted f̂C−i
, and evaluate it

on the corresponding validation set, f̂C−i(Ci). The cross validation
score is the performance of the model averaged across all
validation sets:

CV (Model) =
1

n

K∑
i=1

L
(
f̂C−i

(Ci)
)
,

where L is a loss function.
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Applications of Model Selection
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Predictor Selection: Cross Validation

Rather than choosing a subset of significant predictors
using stepwise selection, we can useK-fold cross
validation:

▶ create a collection of different subsets of the
predictors

▶ for each subset of predictors, compute the cross
validation score for the model created using only
that subset

▶ select the subset (and the corresponding model)
with the best cross validation score

▶ evaluate the model one last time on the test set
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Degree Selection: Stepwise

We can frame the problem of degree selection for
polynomial models as a predictor selection problem:
which of the predictors {x, x2, . . . , xM} should we select
for modeling?

We can apply stepwise selection to determine the
optimal subset of predictors.
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Degree Selection: Cross Validation

We can also select the degree of a polynomial model
usingK-fold cross validation.

▶ consider a number of different degrees

▶ for each degree, compute the cross validation score
for a polynomial model of that degree

▶ select the degree, and the corresponding model,
with the best cross validation score

▶ evaluate the model one last time on the test set
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kNN Revisited

Recall our first simple, intuitive, non-parametric model
for regression - the kNN model. We saw that it is vitally
important to select an appropriate k for the data.

If the k is too small then the model is very sensitive to
noise (since a new prediction is based on very few
observed neighbors), and if the k is too large, the model
tends towards making constant predictions.

A principled way to choose k is throughK-fold cross
validation.
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A Simple Example
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