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Statistical Models

We will assume that the response variable, Y , relates to
the predictors,X , through some unknown function
expressed generally as:

Y = f(X) + ϵ,

where ϵ is a random variable representing
measurement noise.

A statistical model is any algorithm that estimates the
function f . We denote the estimated function as f̂ and
the predicted value of Y givenX = xi as ŷi.

When performing inference, we compute parameters of
f̂ that minimizes the error of our model, where error is
measured by a choice of loss function.
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Simple Linear Regression

A simple linear regression model assume that our
statistical model is

Y = f(X) + ϵ = βtrue
1 X + βtrue

0 + ϵ,

then it follows that f̂ must look like

f̂(X) = β̂1X + β̂0.

When fitting our model, we find β̂0, β̂1 to minimize the
loss function, for example,

β̂0, β̂1 = argmin
β0,β1

L(β0, β1).

The line Ŷ = β̂1X + β̂0 is called the regression line.
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More on Model Evaluation
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Loss Functions Revisited

Recall that there are multiple ways to measure the fitness of
a model, i.e. there are multiple loss functions.

1. (Max absolute deviation) Count only the biggest ‘error’

max
i

|yi − ŷi|

2. (Sum of absolute deviations) Add up the ‘errors’∑
i

|yi − ŷi| or
1

n

∑
i

|yi − ŷi|

3. (Sum of squared errors) Add up the squared ‘errors’∑
i

|yi − ŷi|2 or
1

n

∑
i

|yi − ŷi|2

The average squared error is theMean Squared Error.
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Model Fitness: R2

While loss functions measure the predictive errors
made by a model, we are also interested in the ability of
our models to capture interesting features or variations
in the data.

We compute the explained variance or R2, the ratio of the
variation of the model and the variation in the data. The
explained variance of a regression line is given by

R2 = 1−
∑n

i=1 |yi − yi|
2∑n

i=1 |ŷi − yi|
2

For a regression line, we have that

0 ≤ R2 ≤ 1

Can you see why?
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Model Evaluation: Standard Errors

Rather than evaluating the predictive powers of our
model or the explained variance, we can evaluate how
confident we are in our estimates, β̂0, β̂1, of the model
parameters.

Recall that our estimates β̂0, β̂1 will vary depending on
the observed data. Thus, the variance of β̂0, β̂1 indicates
the extend to which we can rely on any given estimate of
these parameters.

The variance of β̂0, β̂1 are also called their standard
errors.
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Model Evaluation: Standard Errors

If our data is drawn from a larger set of observations
then we can empirically estimate the standard errors of
β̂0, β̂1 through bootstrapping.

If we know the variance σ2 of the noise ϵ, we can
compute SE

(
β̂0

)
, SE

(
β̂1

)
analytically, using the

formulae we derived in the last lecture for β̂0, β̂1:

SE
(
β̂0

)
= σ

√
1

n
+

x2∑
i (xi − x)2

SE
(
β̂1

)
=

σ√∑
i (xi − x)2
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Model Evaluation: Standard Errors

In practice, we do not know the theoretical value of σ2,
since we do not know the exact distribution of the noise
ϵ. However, if we make the following assumptions,

▶ the errors ϵi = yi − ŷi and ϵj = yj − ŷj are
uncorrelated, for i ̸= j,

▶ each ϵi is normally distributed with mean 0 and
variance σ2,

then, we can empirically estimate σ2 from the data and
our regression line:

σ ≈
√

n ·MSE

n− 2
=

√∑
i (yi − ŷi)

2

n− 2
.
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Model Evaluation: Confidence Intervals

Definition
A n% confidence interval of an estimate X̂ is the range of
values such that the true value ofX is contained in this
interval with n percent probability.

For linear regression, the 95% confidence interval for
β̂0, β̂1 can be approximated using their standard errors:

β̂k = β̂k ± 2SE
(
β̂k

)
for k = 0, 1. Thus, with approximately 95% probability,
the true value of β̂k is contained in the interval[
β̂k − 2SE

(
β̂k

)
, β̂k + 2SE

(
β̂k

)]
.
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Model Evaluation: Residual Analysis

When we estimated the variance of ϵ, we assumed that
the residuals ϵi = yi − ŷi were uncorrelated and
normally distributed with mean 0 and fixed variance.

These assumptions need to be verified using the data.
In residual analysis, we typically create two types of
plots:

1. a plot of ϵi with respect to xi. This allows us to
compare the distribution of the noise at different
values of xi.

2. a histogram of ϵi. This allows us to explore the
distribution of the noise independent of xi.
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A Simple Example
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Multiple Linear Regression
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Multilinear Models

In practice, it is unlikely that any response variable Y
depends solely on one predictor x. Rather, we expect
that Y is a function of multiple predictors f(X1, . . . , XJ).

In this case, we can still assume a simple form for f - a
multilinear form:

y = f(X1, . . . , XJ) + ϵ = β0 + β1x1 + . . .+ βJxJ + ϵ.

Hence, f̂ has the form

ŷ = f̂(X1, . . . , XJ) = β̂0 + β̂1x1 + . . .+ β̂JxJ .

Again, to fit this model means to compute β̂0, . . . , β̂J to
minimize a loss function; we will again choose the MSE
as our loss function.
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Multiple Linear Regression

Given a set of observations

{(x1,1, . . . , x1,J , y1), . . . (xn,1, . . . , xn,J , yn)},

the data and the model can be expressed in vector notation,

Y =

 y1
...
yy

 , X =


1 x1,1 . . . x1,J
1 x2,1 . . . x2,J
...

...
. . .

...
1 xn,1 . . . xn,J

 , βββ =


β0
β1
...
βJ

 ,

Thus, the MSE can be expressed in vector notation as

MSE(βββ) =
1

n
∥Y − Xβ∥2.

Minimizing the MSE using vector calculus yields,

β̂ββ =
(
X⊤X

)−1
X⊤Y = argmin

βββ

MSE(βββ).
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A Simple Example
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Evaluating Significance of Predictors
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Finding Significant Predictors: Hypothesis Testing

With multiple predictors, an obvious analysis is to
check which predictor or group of predictors have a
‘significant’ impact on the response variable.

One way to do this is to analyze the ‘likelihood’ that any
one or any set of regression coefficient is zero.
Significant predictors will have coefficients that are
deemed less ‘likely’ to be zero.

Unfortunately, since the regression coefficient vary
depending on the data, we cannot simply pick out
non-zero coefficients from our estimate βββ .
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Finding Significant Predictors: Hypothesis Testing

Hypothesis Testing
Hypothesis testing is a formal process through which we evaluate
the validity of a statistical hypothesis by considering evidence for
or against the hypothesis gathered by random sampling of the
data.

1. State the hypotheses, typically a null hypothesis,H0, and an
alternative hypothesis,H1, that is the negation of the former.

2. Choose a type of analysis, i.e. how to use sample data to
evaluate the null hypothesis. Typically this involves choosing
a single test statistic.

3. Sample data and compute the test statistic.

4. Use the value of the test statistic to either reject or not reject
the null hypothesis.

18



Finding Significant Predictors: Hypothesis Testing

For checking the significance of linear regression coefficients:

1. We set up our hypotheses

H0 : β0 = β1 = . . . = βJ = 0 (Null)

H1 : βj ≠ 0, for at least one j (Alternative)

2. we choose the F -stat to evaluate the null hypothesis,

F =
explained variance

unexplained variance

3. we can compute the F -stat for linear regression models by

F =
(TSS− RSS)/J
RSS/(n− J − 1)

, TSS =
∑
i

(yi − y) ,RSS =
∑
i

(yi − ŷi)

4. If F = 1 we consider this evidence forH0; if F > 1, we consider
this evidence againstH0.
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More on Hypothesis Testing

Applying the F -stat test to {X1, . . . , XJ} determines if
any of the predictors have a significant relationship
with the response.

We can also apply the test to a subset of predictors to
determine if a smaller group of predictors have a
significant relationship with the response.

Note: There is not a fixed threshold for rejecting the null
hypothesis based on the F -stat.

For n and J that are large, F values that are slightly
above 1 are considered to be strong evidence againstH0.
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More on Hypothesis Testing

To determine if any single predictor has a significant
relationship with the response, we can again perform
hypothesis testing. In this case, the test statistics we
use is typically the p-value.

Definition
The p-value is the probability that, when the null
hypothesis is true, the statistical summary of a given
model would be the same as or more extreme than the
observed results.

Smaller p-values are interpreted to be evidence against
the null hypothesis. A standard p-value threshold for
rejecting the null hypothesis is 0.05 (or 5%).
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Finding Significant Predictors: R2

We can compare the ‘significance’ of two specific
groups of predictors {Xj1 , . . . , Xjk} and {Xj′1

, . . . , Xj′
k′
},

by comparing the R2 values of the two models
constructed using each set

R2
(
f̂(Xj1 , . . . , Xjk)

)
v.s. R2

(
f̂(Xj′1

, . . . , Xj′
k′
)
)

Wemay conclude that a higher R2 (i.e. a model that fits
the observation better) is evidence that one set of
predictors impacts the response more significantly
than the other.
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Finding Significant Predictors: Information Criteria

Yet another way to evaluate the explanatory power of
different sets of predictors is to use information criteria.
These are a set of metrics that measures the fit of the
model to observations given the number of parameters
used in the model.

Below are two different such criteria, Aiken’s Information
Criterion and Bayes Information Criterion

AIC ≈ n · ln(RSS/n) + 2J

BIC ≈ n · ln(RSS/n) + J · ln(n)

From the above, we can see that the smaller the AIC or
BIC, the better the model.
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Finding Significant Predictors: Information Criteria

We can compare the ‘significance’ of two specific
groups of predictors {Xj1 , . . . , Xjk} and {Xj′1

, . . . , Xj′
k′
},

by comparing the AIC or BIC values of the two models
constructed using each set

AIC/BIC
(
f̂(Xj1 , . . . , Xjk)

)
v.s. AIC/BIC

(
f̂(Xj′1

, . . . , Xj′
k′
)
)

Wemay conclude that a lower AIC or BIC (i.e. a model
that fits the observation better) is evidence that one set
of predictors impacts the response more significantly
than the other.
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Which Metric of Significance Should We Use?

The procedure of systematically choosing a set of
predictors that have a significant relationship with the
response variable is called variable selection.

But which metric (F -stats, p-values, R2, AIC/BIC) should
we use to determine the significance of a set of
predictors?

In later lectures, we will see that each metric has its
strengths and draw-backs. Rather than relying on a
single metric, we should use multiple metrics in
conjunction and double check with common sense!
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Polynomial Regression
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Polynomial Regression as Linear Regression

The simplest non-linear model we can consider, for a response Y
and a predictorX , is a polynomial model of degreeM ,

y = β0 + β1x+ β2x
2 + . . .+ βMxM + ϵ.

Just as in the case of linear regression with cross terms,
polynomial regression is a special case of linear regression - we
treat each xm as a separate predictor. Thus, we can write

Y =

 y1
...
yn

 , X =


1 x1

1 . . . xM
1

1 x1
2 . . . xM

2
...

...
. . .

...
1 xn . . . xM

n

 , βββ =


β0

β1

...
βM

 .

Again, minimizing the MSE using vector calculus yields,

β̂ββ = argmin
βββ

MSE(βββ) =
(
X⊤X

)−1
X⊤Y.
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Generalized Polynomial Regression

We can generalize polynomial models:

1. considering polynomial models with multiple predictors
{X1, . . . , XJ}:

y =β0 + β1x1 + . . .+ βMxM1

+ . . .

+ β1+MJxJ + . . .+ βM+MJx
M
J

2. consider polynomial models with multiple predictors
{X1, X2} and cross terms:

y =β0 + β1x1 + . . .+ βMxM1

+ β1+Mx2 + . . .+ β2MxM2

+ β1+2M (x1x2) + . . .+ β3M (x1x2)
M

In each case, we consider each term xmj and each cross term
x1x2 an unique predictor and apply linear regression.
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