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Announcements

1. Work in pairs but not submitting together? Add the
name of your partner (only one) in the notebook .

2. HW1 due on Wednesday 11:59pm.

3. Create your group now.

4. A-sections start on Wednesday.

5. HW2 will be released on Wednesday 11:58pm.
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NYC Car Hire Data

The yellow and green taxi trip records include fields
capturing pick-up and drop-off dates/times, pick-up and
drop-off locations, trip distances, itemized fares, rate types,
payment types, and driver-reported passenger counts.
The data used were collected and provided to the NYC Taxi
and Limousine Commission (TLC).
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NYC Car Hire Data

More details on the data can be found here:

http://www.nyc.gov/html/tlc/html/about/trip_
record_data.shtml

Notebook:
https:
//github.com/cs109/a-2017/blob/master/Lectures/
Lecture4-IntroRegression/Lecture4_Notebook.ipynb
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Statistical Modeling
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Predicting a Variable

Let’s image a scenario where we’d like to predict one
variable using another (or a set of other) variables.

Examples:
▶ Predicting the amount of view a YouTube video will
get next week based on video length, the date it was
posted, previous number of views, etc.

▶ Predicting which movies a Netflix user will rate
highly based on their previous movie ratings,
demographic data etc.

▶ Predicting the expected cab fare in New York City
based on time of year, location of pickup, weather
conditions etc.
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Outcome vs. Predictor Variables

There is an asymmetry in many of these problems: the
variable we’d like to predict may be more difficult to
measure, is more important than the other(s), or may
be directly or indirectly influenced by the values of the
other variable(s).

Thus, we’d like to define two categories of variables:
variables whose value we want to predict and variables
whose values we use to make our prediction.
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Outcome vs. Predictor Variables

Definition
Suppose we are observing p+ 1 number variables and
we are making n sets observations. We call

▶ the variable we’d like to predict the outcome or
response variable; typically, we denote this variable
by Y and the individual measurements yi.

▶ the variables we use in making the predictions the
features or predictor variables; typically, we denote
these variables byX = (X1, . . . , Xp) and the
individual measurements xi,j .

Note: i indexes the observation (i = 1, 2, . . . , n) and j
indexes the value of the j-th predictor variable
(j = 1, 2, . . . , p).
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True vs. Statistical Model

We will assume that the response variable, Y , relates to
the predictors,X , through some unknown function
expressed generally as:

Y = f(X) + ϵ.

Here,
▶ f is the unknown function expressing an
underlying rule for relating Y toX ,

▶ ϵ is random amount (unrelated toX) that Y differs
from the rule f(X)

A statistical model is any algorithm that estimates f . We
denote the estimated function as f̂ .
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Prediction vs. Estimation

For some problems, what’s important is obtaining f̂ , our
estimate of f . These are called inference problems.

When we use a set of measurements of predictors,
(xi,1, . . . , xi,p), in an observation to predict a value for the
response variable, we denote the predicted value by ŷi,

ŷi = f̂(xi,1, . . . , xi,p).

For some problems, we don’t care about the specific
form f̂ , we just want to make our prediction ŷi as close
to the observed value yi as possible. These are called
prediction problems.

We’ll see that some algorithms are better suited for
inference and others for prediction.
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Regression vs. Classification
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Outcome Variables

There are two main types of prediction problems we will
see this semester:

▶ Regression problems are ones with a quantitative
response variable.
Example: Predicting the number of taxicab
pick-ups in New York.

▶ Classification problems are ones with a categorical
response variable.
Example: Predicting whether or not a Netflix user
will like a particular movie.

This distinction is important, as each type of problem
may require it’s own specialized algorithms along with
metrics measuring effectiveness.
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Error, Loss Functions
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Line of Best Fit

Which of the following linear models is the best? How
do you know?
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Using Loss Functions

Loss functions are used to choose a suitable estimate f̂
of f .

A statistical modeling approach is often an algorithm
that:

▶ assumes somemathematical form for f , and hence
for f̂ ,

▶ then chooses values for the unknown parameters
of f̂ so that the loss function is minimized on the
set of observations
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Error & Loss Functions

In order to quantify how well a model performs, we
define a loss or error function.

A common loss function for quantitative outcomes is
the Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

The quantity |yi − ŷi| is called a residual and measures
the error at the i-th prediction.

Caution: The MSE is by no means the only valid (or the
best) loss function!

Question: What would be an intuitive loss function for
predicting categorical outcomes?
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Model I: k-Nearest Neighbors
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k-Nearest Neighbors

The k-Nearest Neighbor (kNN) model is an intuitive way to
predict a quantitative response variable:

to predict a response for a set of observed predictor
values, we use the responses of other observations
most similar to it!

Note: this strategy can also be applied in classification
to predict a categorical variable. We will encounter kNN
again later in the semester in the context of
classification.

21



k-Nearest Neighbors

k-Nearest Neighbors

Fixed a value of k. The predicted response for the i-th
observation is the average of the observed response of
the k-closest observations

ŷi =
1

k

k∑
i=1

yni

where {Xn1 , . . . , Xnk
} are the k observations most

similar toXi (�similar� refers to a notion of distance
between predictors).
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k-Nearest Neighbors for Classification
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kNN Regression: A Simple Example

Suppose you have 5 observations of taxi cab pick ups in
New York City, the response is the average cab fare (in
units of $10), and the predictor is time of day (in hours
after 7am):

X 1 2 3 4 5
Y 6 7 4 3 2

We calculate the predicted number of pickups using
kNN for k = 2:

X = 1 ŷ1 =
1

2
(7 + 4) = 5.5
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kNN Regression: A Simple Example

Suppose you have 5 observations of taxi cab pick ups in
New York City, the response is the average cab fare (in
units of $10), and the predictor is time of day (in hours
after 7am):

X 1 2 3 4 5
Y 6 7 4 3 2

We calculate the predicted number of pickups using
kNN for k = 2:

X = 2 ŷ2 =
1

2
(6 + 4) = 5.0
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kNN Regression: A Simple Example

Suppose you have 5 observations of taxi cab pick ups in
New York City, the response is the average cab fare (in
units of $10), and the predictor is time of day (in hours
after 7am):

X 1 2 3 4 5
Y 6 7 4 3 2

We calculate the predicted number of pickups using
kNN for k = 2:

Ŷ = (5.5, 5.0, 5.0, 3.0, 3.5)
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kNN Regression: A Simple Example

Suppose you have 5 observations of taxi cab pick ups in
New York City, the response is the average cab fare (in
units of $10), and the predictor is time of day (in hours
after 7am):

X 1 2 3 4 5
Y 6 7 4 3 2

We calculate the predicted number of pickups using
kNN for k = 2:

Ŷ = (5.5, 5.0, 5.0, 3.0, 3.5)

The MSE given our predictions is

MSE =
1

5

[
(6− 5.5)2 + (7− 5.0)2 + . . .+ (3.5− 2)2

]
= 1.5

On average, our predictions are off by $15.
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kNN Regression: A Simple Example

We plot the observed responses along with predicted
responses for comparison:
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Choice of k Matters

But what value of k should we choose? What would our
predicted responses look like if k is very small? What if
k is large (e.g. k = n)?
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kNN with Multiple Predictors

In our simple example, we used absolute value to
measure the distance between the predictors in two
different observations, |xi − xj|.
When we have multiple predictors in each observation,
we need a notion of distance between two sets of
predictor values. Typically, we use Euclidean distance:

d(xi − xj) =
√
(xi,1 − xj,1)2 + . . .+ (xi,p − xj,p)2

Caution: when using Euclidean distance, the scale (or
units) of measurement for the predictors matter!
Predictors with large values, comparatively, will
dominate the distance measurement.
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Model II: Linear Regression
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Linear Models in One Variable
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Linear Models in One Variable
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Linear Models in One Variable
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Linear Models in One Variable
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Linear Models in One Variable

Note that in building our kNN model for prediction, we
did not compute a closed form for f̂ , our estimate of the
function, f , relating predictor to response.

Alternatively, if each observation has only one predictor,
we can build a model by first assuming a simple form
for f (and hence f̂ ), say a linear form,

Y = f(X) + ϵ = β1X + β0 + ϵ.

Again, ϵ is the random quantity or noise by which
observed values of Y differ from the rule f(X).
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Inference for Linear Regression

If our statistical model is

Y = f(X) + ϵ = βtrue
1 X + βtrue

0 + ϵ,

then it follows that our estimate is

Ŷ = f̂(X) = β̂1X + β̂0

where β̂1 and β̂0 are estimates of β1 and β0, respectively,
that we compute using observations.

Recall that our intuition says to choose β̂1 and β̂0 in
order to minimize the predictive errors made by our
model, i.e. minimize our loss function.
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Inference for Linear Regression

Again we use MSE as our loss function,

L(β0, β1) =
1

n

n∑
i=1

(yi − ŷi)
2 =

1

n

n∑
i=1

[yi − (β1X + β0)]
2 .

Then the optimal values for β̂1 and β̂0 should be

β̂0, β̂1 = argmin
β0,β1

L(β0, β1).

Now, taking the partial derivatives of L and finding the
global minimum will give us explicit formulae for β̂0, β̂1,

β̂1 =

∑
i(xi − x)(yi − y)∑

i(xi − x)2
, β̂0 = y − β̂1x

where y and x are sample means. The line Ŷ = β̂1X + β̂0

is called the regression line.
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Linear Regression: A Simple Example

Recall our simple example from before, where we
observe the average cab fare in NYC using the time of
day,

X 1 2 3 4 5
Y 6 7 4 3 2

By our formula, we compute the regression line to be

Ŷ = −1.2X + 8

Using this model, we can generate predicted responses:

Ŷ = (6.8, 5.6, 4.4, 3.2, 2.0)

Let’s graph our linear model against the observations.
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Linear Regression: A Simple Example

Why doesn’t our line fit the ob-
servations exactly? There are
two possibilities:

▶ f is not a linear function
▶ the difference between
prediction and
observation is due to the
noise term in Y = f(X)+ ϵ.

Regardless of the form of f , the presence of the random
term ϵmeans that the predictions made using f̂ will
never exactly match the observations.

Question: Is it possible to measure how confidently β̂0,
β̂1 approximate the true parameters of f?
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Evaluating Model
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Evaluating Model Things to Consider

▶ How well do we know f̂ ?
The confidence intervals of our β̂0 and β̂1?

▶ Evaluating Significance of Predictors
Does the outcome depend on the predictors?

▶ Model Fitness
How does the model perform predicting?

▶ Comparison of Two Models
How do we choose from two different models?
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Understanding Model Uncertainty

We interpret the ϵ term in our observation

Y = f(X) + ϵ

to be noise introduced by random variations in natural
systems or imprecisions of our scientific instruments.

We call ϵ the measurement error or irreducible error.
Since even predictions made with the actual function f
will not match observed values of Y .

Due to ϵ, every time we measure the response Y for a fix
value ofX we will obtain a different observation, and
hence a different estimate of β0 and β1.
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Uncertainty In β̂0 and β̂1

Again due to ϵ, if we make only a few observations, the
noise in the observed values of Y will have a large
impact on our estimate of β0 and β1.

If we make many observations, the noise in the
observed values of Y will ‘cancel out’; noise that biases
some observations towards higher values will be
canceled by the noise that biases other observations
towards lower values.

This feels intuitively true but requires some
assumptions on ϵ and a formal justification - or at least
an example.
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Uncertainty In β̂0 and β̂1

In summary, the variations in β̂0, β̂1 (estimates of β0 and
β1 respectively) are affected by

▶ (Measurement) Var[ϵ], the variance (the scale of the
variation) in the noise, ϵ

▶ (Sampling) n, the number of observations we make

The variances of β̂0, β̂1 are also called standard errors,
which we will see later.
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A Simple Example
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Bootstrapping for Estimating Sampling Error

With some assumption on ϵ, we can compute the
variances or standard errors of β̂0 and β̂1 analytically.

The standard errors can also be estimated empirically
through bootstrapping.

Definition
Bootstrapping is the practice of estimating properties
of an estimator by measuring those properties by, for
example, sampling from the observed data.

For example, we can compute β̂0 and β̂1 multiple times
by randomly sampling from our data set. We then use
the variance of our multiple estimates to approximate
the true variance of β̂0 and β̂1.

36



Comparison of Two Models
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Parametric vs. Non-parametric Models

Linear regression is an example of a parametric model,
that is, it is a model with a fixed form and a fixed
number of parameters that does not depend on the
number of observations in the training set.

kNN is an example of a non-parametric model, that is, it
is a model whose structure depends on the data. The
set of parameters of the kNN model is the entire
training set.

In particular, the number of parameters in kNN depends
on the number of observations in the training set.
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kNN vs. Linear Regression

So which model is better? Rather than answer this
question, let’s define ‘better’.

To compare two models, we can consider any
combination of the following criteria (and possibly
more):

▶ Which model gives less predictive error, with
respect to a loss function?

▶ Which model takes less space to store?

▶ Which model takes less time to train (perform
inference)?

▶ Which model takes less time to make a prediction?
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