
EDA Part 1: Data Engineering
Tabular Data, Pandas, and Scraping

cs109a, Fall 2017

Pavlos Protopapas, Kevin Rader, Rahul Dave, Margo Levine

It took about three years
before the BellKor’s Pragma6c
Chaos team managed to win

the prize ... The winning
algorithm was ... so complex

that it was never implemented
by NeDlix. 1

1 h$ps://hbr.org/2012/10/big-data-hype-and-reality

Data Scien*st: Sexiest Job of the 21st Century

It’s important that our data team wasn’t comprised solely of mathema6cians
and other “data people.” It’s a fully integrated product group that includes

people working in design, web development, engineering, product
marke6ng,

and opera6ons. They all understand and work with data, and I consider them
all data scien6sts... OAen, an engineer can have the insight that makes it

>clear how the product’s design should work, or vice-versa — a designer can
have

the insight that helps the engineers understand how to beEer use the data.
Or

it may take someone from marke6ng to understand what a customer really
wants to accomplish.2

2 D. J. Pa(l, U.S. Chief Data Scien(st, Building data science teams. " O'Reilly Media, Inc.",
2011.

DATA ENGINEERING
• data: scraping, API, feature engineering, all part of EDA

• compute: code, python, R, julia, spark, hadoop

• storage/database: pandas, SQL, NoSQL, HBase, disk,
memory

• devops: AWS, docker, mesos, repeatability

• product: database, web, API, viz, UI, story

Different at different scales....

The basic EDA workflow5

1. Build a DataFrame from the data (ideally, put all data in this object)

2. Clean the DataFrame. It should have the following properAes:

• Each row describes a single object

• Each column describes a property of that object

• Columns are numeric whenever appropriate

• Columns contain atomic properAes that cannot be further decomposed

3. Explore global proper0es. Use histograms, scaIer plots, and aggregaAon
funcAons to summarize the data.

4. Explore group proper0es. Use groupby, queries, and small mulAples to compare
subsets of the data.

5 enunciated in this form by Chris Beaumont, the first Head TF of cs109

Today, Monday

We'll focus on data and rela0onal storage

• How do we engineer features from the web?

• What is a rela7onal Database?

• What Grammar of Data does it follow?

• How is this grammar implemented in Pandas?

Wednesday
We'll focus on the visualiza2on part

of EDA.

In reality, both go together.

Rela%onal Database
• Don't say_: seek 20 bytes onto disk and pick up

from there. The next row is 50 bytes hence

• Say: select data from a set. I don't care where it is,
just get the row to me.

• Its just the table Kevin talked about last Gme...

Rela%onal Database(contd)
• A collec(on of tables related to each other through

common data values.

• Rows represent a:ributes of something

• Everything in a column is values of one a:ributes

• A cell is expected to be atomic

• Tables are related to each other if they have
columns called keys which represent the same
values

Scales of Measurement
• Quan&ta&ve (Interval and Ra&o)

• Ordinal

• Nominal3

3 S. S. Stevens, Science, New Series, Vol. 103, No. 2684 (Jun. 7, 1946), pp. 677-680

Grammar of Data
Been there for a while (SQL, Pandas), formalized in
dplyr4.

• provide simple verbs for simple things. These are func8ons corresponding to
common data manipula8on tasks

• second idea is that backend does not ma:er. Here we constrain ourselves to
Pandas.

• mul8ple backends implemented in Pandas, Spark, Impala, Pig, dplyr, ibis, blaze

4 Hadley Wickham: h0ps://cran.rstudio.com/web/packages/dplyr/vigne0es/
introduc>on.html

Why bother

• learn how to do core data manipula2ons, no ma5er
what the system

• rela2onal databases cri2cal for non-memory fits.
Big installed base.

• one off ques2ons: google, stack-overflow, h5p://
chrisalbon.com

The grammar of data
For cleaning and for transforma1on:

Example: Candidates

Contributors

Opera&ons

• QUERY: dfcwci[(dfcwci.state=='VA') &
(dfcwci.amount < 400)]

• SORT: dfcwci.sort_values(by="amount",
ascending=False)

• SELECT-COLUMNS: dfcwci[['first_name',
'amount']]

• SELECT-DISTINCT:
dfcwci[['last_name','first_name']].dr
op_duplicates()

• ASSIGN:
dfcwci['name']=dfcwci['last_name']+",
"+dfcwci['first_name']

• ASSIGN(in-place):
dfcwci.loc[dfcwci.state=='VA',
'name']="junk"

• AGGREGATE: dfcwci.amount.max(),
dfcwci.describe()

• DELETE: del dfcwci['name'] (DROP-
COLUMN)

Split-Apply-Combine

• GROUP-AGG

• spli&ng the data into groups
based on some criteria

• applying a func7on to each
group independently

• combining the results into a
data structure

RELATIONSHIPS (in addi2on to rubric)

• we usually need to combine data from mul4ple
sources

• different systems have different ways, most copy
SQL (pandas)

• sub-select:

obamaid=dfcand.query("last_name=='Obama'")['id'].values[0]
obamacontrib=dfcwci.query("candidate_id==%i" % obamaid)

JOINS
• combine tables on a common key-value

• 90% of the 8me, EXPLICIT INNER JOIN

Web Servers

• A server is a long running process (also called
daemon) which listens on a pre-specified port

• and responds to a request, which is sent using a
protocol called HTTP

• A browser must first we must parse the url.
Everything aCer a # is a fragment. UnGl then its the
DNS name or ip address, followed by the URL.

Example

Our notebooks also talk to a local web server on our machines:
http://localhost:8888/Documents/cs109/
BLA.ipynb#something

• protocol is http, hostname is localhost, port is 8888

• url is /Documents/cs109/BLA.ipynb

• url fragment is `#something

Request is sent to localhost on port 8888. It says:

Request:
GET /request-URI HTTP/version

Example with Response: Google

GET / HTTP/1.0
Host: www.google.com

HTTP/1.0 200 OK
Date: Mon, 14 Nov 2016 04:49:02 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
P3P: CP="This is ..."
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Set-Cookie: NID=90=gb5q7b0...; expires=Tue, 16-May-2017 04:49:02 GMT; path=/; domain=.google.com; HttpOnly
Accept-Ranges: none
Vary: Accept-Encoding

<!doctype html><html itemscope=""
itemtype="http://schema.org/WebPage" lang="en">
<head><meta content="Search the world's information,

HTTP Status Codes6

• 200 OK:
Means that the server did whatever the client wanted it to, and all is well.

• 201 Created:
The request has been fulfilled and resulted in a new resource being created. The newly created resource can be referenced by the
URI(s) returned in the enHty of the response, with the most specific URI for the resource given by a LocaHon header field.

• 400: Bad request
The request sent by the client didn't have the correct syntax.

• 401: Unauthorized
Means that the client is not allowed to access the resource. This may change if the client retries with an authorizaHon header.

• 403: Forbidden
The client is not allowed to access the resource and authorizaHon will not help.

• 404: Not found
Seen this one before? :) It means that the server has not heard of the resource and has no further clues as to what the client should
do about it. In other words: dead link.

• 500: Internal server error
Something went wrong inside the server.

• 501: Not implemented
The request method is not supported by the server.

6 (from h)p://www.garshol.priv.no/download/text/h)p-tut.htm)

requests

• great module built into python for h4p requests

req = requests.get("https://en.wikipedia.org/wiki/Harvard_University")

<Response [200]>

page = req.text

'<!DOCTYPE html>\n<html class="client-nojs" lang="en" dir="ltr">\n<head>\n
<meta charset="UTF-8"/>\n<title>Harvard University -
Wikipedia</title>\n<script>document.documentElement.className =
document.documentElement.className.replace(/(^|\\s)client-nojs(\\s|$)/,
"$1client-js$2"
);</script>\n<script>(window.RLQ=window.RLQ||[]).push(function(){mw.config.set({
"wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber"
:0,"wgPageName":"Harvard_University","wgTitle":"Harva...'

Python data scraping

• Why scrape the web?

• vast source of informa7on, combine with other
data sets

• companies have not provided APIs

• automate tasks

• keep up with sites

• fun!

copyrights and permission:

• be careful and polite

• give credit

• care about media law

• don't be evil (no spam, overloading sites, etc.)

Robots.txt

• specified by web site owner

• gives instruc4ons to web robots (aka your script)

• is located at the top-level directory of the web
server

e.g.: h'p://google.com/robots.txt

HTML
• angle brackets

• should be in pairs, eg <p>Hello</p>

• maybe in implicit bears, such as

<!DOCTYPE html>
<html>
 <head>
 <title>Ttle</title>
 </head>
 <body>
 <h1>Body Title</h1>
 <p>Body Content</p>
 </body>
</html>

Developer Tools

• ctrl/cmd shi- i in chrome

• cmd-op3on-i in safari

• look for "inspect element"

• locate details of tags

Beau%ful Soup

• will normalize dirty html

• basic usage

import bs4
get bs4 object
soup = bs4.BeautifulSoup(source)
all a tags
soup.findAll('a')
first a
soup.find('a')
get all links in the page
link_list = [l.get('href') for l in soup.findAll('a')]

HTML is a tree
tree = bs4.BeautifulSoup(source)

get html root node
root_node = tree.html

get head from root using contents
head = root_node.contents[0]

get body from root
body = root_node.contents[1]

could directly access body
tree.body

Demographics table we want

Table with sole class wikitable

Beau%ful Soup Code

dfinder = lambda tag: tag.name=='table' and tag.get('class') == ['wikitable']
table_demographics = soup.find_all(dfinder)
rows = [row for row in table_demographics[0].find_all("tr")]
header_row = rows[0]
columns = [col.get_text() for col in header_row.find_all("th") if col.get_text()]
columns = [rem_nl(c) for c in columns]
indexes = [row.find("th").get_text() for row in rows[1:]]
values = []
for row in rows[1:]:
 for value in row.find_all("td"):
 values.append(to_num(value.get_text()))
stacked_values_lists = [values[i::3] for i in range(len(columns))]
stacked_values_iterator = zip(*stacked_values_lists)
df = pd.DataFrame(list(stacked_values_iterator), columns=columns, index=indexes)

