
Lecture #19: Support Vector Machines #2
CS 109A, STAT 121A, AC 209A: Data Science

Pavlos Protopapas Kevin Rader
Margo Levine Rahul Dave



Lecture Outline

Review

Extension to Non-linear Boundaries

2



Review

3



Classifiers and Decision Boundaries

Last time, we derived a linear classifier based on the
intuition that a good classifier should

▶ maximize the distance between the points and the
decision boundary (maximize margin)

▶ misclassify as few points as possible

4



SVC as Optimization

With the help of geometry, we translated our wish list
into an optimization problem min

ξn∈R+,w,b
∥w∥2 + λ

N∑
n=1

ξn

such that yn(w⊤xn + b) ≥ 1− ξn, n = 1, . . . , N

where ξn quantifies the error at xn.

The SVC optimization problem is often solved in an
alternate form (the dual form)

max
αn≥0,

∑
n αnyn=0

∑
n

αn −
1

2

N∑
n,m=1

ynymαnαmx
⊤
nxm

Later we’ll see that this alternate form allows us to use
SVC with non-linear boundaries.

5



Decision Boundaries and Support Vectors

Recall how the error terms ξn’s were defined: the points
where ξn = 0 are precisely the support vectors

6



Decision Boundaries and Support Vectors

Thus to re-construct the decision boundary, only the
support vectors are needed!

6



Decision Boundaries and Support Vectors

▶ The decision boundary of an SVC is given by

ŵ⊤x+ b̂ =
∑

xn is a support vector

α̂nyn(x
⊤
nxn) + b

where α̂n and the set of support vectors are found
by solving the optimization problem.

▶ To classify a test point xtest, we predict

ŷtest = sign
(
ŵ⊤x+ b̂

)

6



Extension to Non-linear Boundaries

7



Polynomial Regression: Two Perspectives

Given a training set

{(x1, y1), . . . , (xN , yN)}

with a single real-valued predictor, we can view fitting a
2nd degree polynomial model

w0 + w1x+ w2x
2

on the data as the process of finding the best quadratic
curve that fits the data. But in practice, we first expand
the feature dimension of the training set

xn 7→ (x0
n, x

1
n, x

2
n)

and train a linear model on the expanded data

{(x0
n, x

1
n, x

2
N , y1), . . . , (x

0
N , x

1
N , x

2
N , yN)}

8



Transforming the Data

The key observation is that training a polynomial model
is just training a linear model on data with transformed
predictors.

In our previous example, transforming the data to fit a
2nd degree polynomial model requires a map

ϕ : R → R3

ϕ(x) = (x0, x1, x2)

where R called the input space, R3 is called the feature
space.

While the response may not have a linear correlation in
the input space R, it may have one in the feature space
R3.

9



SVC with Non-Linear Decision Boundaries

The same insight applies to classification: while the
response may not be linear separable in the input
space, it may be in a feature space after a fancy
transformation:

10



SVC with Non-Linear Decision Boundaries

The motto: instead of tweaking the definition of SVC to
accommodate non-linear decision boundaries, we map
the data into a feature space in which the classes are
linearly separable (or nearly separable):

▶ Apply transform ϕ : RJ → RJ ′
on training data

xn 7→ ϕ(xn)

where typically J ′ is much larger than J .

▶ Train an SVC on the transformed data

{(ϕ(x1), y1), . . . , (ϕ(xN), yN)}

10



The Kernel Trick

Since the feature space RJ ′
is extremely high

dimensional, computing ϕ explicitly can be costly.

Instead, we note that computing ϕ is unnecessary.

Recall that training an SVC involves solving the
optimization problem

max
αn≥0,

∑
n αnyn=0

∑
n

αn −
1

2

N∑
n,m=1

ynymαnαmϕ(xn)
⊤ϕ(xm)

In the above, we are only interested in computing inner
products ϕ(xn)

⊤ϕ(xm) in the feature space and not the
quantities ϕ(xn).

11



The Kernel Trick

The inner product between two vectors is a measure of
the similarity of the two vectors.

Definition
Given a transformation ϕ : RJ → RJ ′

, from input space
RJ to feature space RJ ′

, the functionK : RJ × RJ → R
defined by

K(xn, xm) = ϕ(xn)
⊤ϕ(xm), xn, xm ∈ RJ

is called the kernel function of ϕ.

Generally, kernel functionmay refer to any function
K : RJ × RJ → R that measure the similarity of vectors
in RJ , without explicitly defining a transform ϕ.

11



The Kernel Trick

For a choice of kernelK ,

K(xn, xm) = ϕ(xn)
⊤ϕ(xm)

we train an SVC by solving

max
αn≥0,

∑
n αnyn=0

∑
n

αn −
1

2

N∑
n,m=1

ynymαnαmK(xn, xm)

ComputingK(xn, xm) can be done without computing
the mappings ϕ(xn), ϕ(xm).

This way of training a SVC in feature space without
explicitly working with the mapping ϕ is called the
kernel trick.

11



Transforming Data: An Example

Example

Let’s define ϕ : R2 → R6 by

ϕ ([x1, x2]) = (1,
√
2x1,

√
2x2, x

2
1, x

2
2,
√
2x1x2)

The inner product in the feature space is

ϕ ([x11, x12])
⊤ ϕ ([x21, x22]) = (1 + x11x21 + x12x22)

2

Thus, we can directly define a kernel function
K : R2 × R2 → R by

K(x1, x2) = (1 + x11x21 + x12x22)
2.

Notice that we need not compute ϕ ([x11, x12]), ϕ ([x21, x22]) to
computeK(x1, x2).

12



Kernel Functions

Common kernel functions include:

▶ Polynomial Kernel (kernel='poly')

K(x1, x2) = (x⊤
1 x2 + 1)d

where d is a hyperparameter

▶ Radial Basis Function Kernel (kernel='rbf')

K(x1, x2) = exp

{
−∥x1 − x2∥2

2σ2

}
where σ is a hyperparameter

▶ Sigmoid Kernel (kernel='sigmoid')

K(x1, x2) = tanh(κx⊤
1 x2 + θ)

where κ and θ are hyperparameters.
13



Let’s go to the notebook

14


	Review
	Extension to Non-linear Boundaries

