Lecture #19: Support Vector Machines #2 CS 109A, STAT 121A, AC 209A: Data Science

Pavlos Protopapas Kevin Rader Margo Levine Rahul Dave

Review

Extension to Non-linear Boundaries

Review

Last time, we derived a linear classifier based on the intuition that a good classifier should

- maximize the distance between the points and the decision boundary (maximize margin)
- misclassify as few points as possible

With the help of geometry, we translated our wish list into an optimization problem

$$\begin{cases} \min_{\xi_n \in \mathbb{R}^+, w, b} \|w\|^2 + \lambda \sum_{n=1}^N \xi_n \\ \text{such that } y_n(w^\top x_n + b) \ge 1 - \xi_n, \ n = 1, \dots, N \end{cases}$$

where ξ_n quantifies the error at x_n .

The SVC optimization problem is often solved in an alternate form (the dual form)

$$\max_{\alpha_n \geq 0, \ \sum_n \alpha_n y_n = 0} \sum_n \alpha_n - \frac{1}{2} \sum_{n,m=1}^N y_n y_m \alpha_n \alpha_m x_n^\top x_m$$

Later we'll see that this alternate form allows us to use SVC with non-linear boundaries.

Decision Boundaries and Support Vectors

Recall how the error terms ξ_n 's were defined: the points where $\xi_n = 0$ are precisely the support vectors

Decision Boundaries and Support Vectors

Thus to re-construct the decision boundary, **only the support vectors are needed!**

Decision Boundaries and Support Vectors

▶ The decision boundary of an SVC is given by

$$\hat{w}^{\top}x + \hat{b} = \sum_{x_n \text{ is a support vector}} \hat{\alpha}_n y_n(x_n^{\top}x_n) + b$$

where $\hat{\alpha}_n$ and the set of support vectors are found by solving the optimization problem.

• To classify a test point x_{test} , we predict

$$\hat{y}_{test} = \mathsf{sign}\left(\hat{w}^{\top}x + \hat{b}\right)$$

Extension to Non-linear Boundaries

Given a training set

 $\{(x_1,y_1),\ldots,(x_N,y_N)\}$

with a single real-valued predictor, we can view fitting a 2nd degree polynomial model

$$w_0 + w_1 x + w_2 x^2$$

on the data as the process of finding the best quadratic curve that fits the data. But in practice, we first expand the feature dimension of the training set

$$x_n \mapsto (x_n^0, x_n^1, x_n^2)$$

and train a linear model on the expanded data

$$\{(x_n^0, x_n^1, x_N^2, y_1), \dots, (x_N^0, x_N^1, x_N^2, y_N)\}$$

The key observation is that training a polynomial model is just training a linear model on data with transformed predictors.

In our previous example, transforming the data to fit a 2nd degree polynomial model requires a map

$$\phi : \mathbb{R} \to \mathbb{R}^3$$
$$\phi(x) = (x^0, x^1, x^2)$$

where $\mathbb R$ called the $\textit{input space}, \mathbb R^3$ is called the feature space.

While the response may not have a linear correlation in the input space \mathbb{R} , it may have one in the feature space \mathbb{R}^3 .

SVC with Non-Linear Decision Boundaries

The same insight applies to classification: while the response may not be linear separable in the input space, it may be in a feature space after a fancy transformation:

Input Space

Feature Space

The motto: instead of tweaking the definition of SVC to accommodate non-linear decision boundaries, we map the data into a feature space in which the classes are linearly separable (or nearly separable):

 \blacktriangleright Apply transform $\phi: \mathbb{R}^J \rightarrow \mathbb{R}^{J'}$ on training data

$$x_n \mapsto \phi(x_n)$$

where typically J' is much larger than J.

Train an SVC on the transformed data

$$\{(\phi(x_1), y_1), \ldots, (\phi(x_N), y_N)\}$$

Since the feature space $\mathbb{R}^{J'}$ is extremely high dimensional, computing ϕ explicitly can be costly.

Instead, we note that computing ϕ is unnecessary.

Recall that training an SVC involves solving the optimization problem

$$\max_{\alpha_n \ge 0, \sum_n \alpha_n y_n = 0} \sum_n \alpha_n - \frac{1}{2} \sum_{n,m=1}^N y_n y_m \alpha_n \alpha_m \phi(x_n)^\top \phi(x_m)$$

In the above, we are only interested in computing inner products $\phi(x_n)^{\top}\phi(x_m)$ in the feature space and not the quantities $\phi(x_n)$.

The Kernel Trick

The *inner product* between two vectors is a measure of the similarity of the two vectors.

Definition

Given a transformation $\phi : \mathbb{R}^J \to \mathbb{R}^{J'}$, from input space \mathbb{R}^J to feature space $\mathbb{R}^{J'}$, the function $K : \mathbb{R}^J \times \mathbb{R}^J \to \mathbb{R}$ defined by

$$K(x_n, x_m) = \phi(x_n)^\top \phi(x_m), \quad x_n, x_m \in \mathbb{R}^J$$

is called the **kernel function** of ϕ .

Generally, **kernel function** may refer to any function $K : \mathbb{R}^J \times \mathbb{R}^J \to \mathbb{R}$ that measure the similarity of vectors in \mathbb{R}^J , without explicitly defining a transform ϕ .

For a choice of kernel K,

$$K(x_n, x_m) = \phi(x_n)^\top \phi(x_m)$$

we train an SVC by solving

$$\max_{\alpha_n \ge 0, \sum_n \alpha_n y_n = 0} \sum_n \alpha_n - \frac{1}{2} \sum_{n,m=1}^N y_n y_m \alpha_n \alpha_m K(x_n, x_m)$$

Computing $K(x_n, x_m)$ can be done without computing the mappings $\phi(x_n), \phi(x_m)$.

This way of training a SVC in feature space without explicitly working with the mapping ϕ is called **the** kernel trick.

Transforming Data: An Example

Example

Let's define $\phi:\mathbb{R}^2\to\mathbb{R}^6$ by

$$\phi\left([x_1, x_2]\right) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

The inner product in the feature space is

$$\phi([x_{11}, x_{12}])^{\top} \phi([x_{21}, x_{22}]) = (1 + x_{11}x_{21} + x_{12}x_{22})^2$$

Thus, we can directly define a kernel function $K:\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ by

$$K(x_1, x_2) = (1 + x_{11}x_{21} + x_{12}x_{22})^2.$$

Notice that we need not compute $\phi([x_{11}, x_{12}])$, $\phi([x_{21}, x_{22}])$ to compute $K(x_1, x_2)$.

Kernel Functions

Common kernel functions include:

Polynomial Kernel (kernel='poly')

$$K(x_1, x_2) = (x_1^{\top} x_2 + 1)^d$$

where \boldsymbol{d} is a hyperparameter

Radial Basis Function Kernel (kernel='rbf')

$$K(x_1, x_2) = \exp\left\{-\frac{\|x_1 - x_2\|^2}{2\sigma^2}\right\}$$

where σ is a hyperparameter

Sigmoid Kernel (kernel='sigmoid')

$$K(x_1, x_2) = \tanh(\kappa x_1^\top x_2 + \theta)$$

where κ and θ are hyperparameters.