Lecture #19: Support Vector Machines #2
CS 109A, STAT 121A, AC 209A: Data Science

Pavlos Protopapas Kevin Rader
Margo Levine Rahul Dave

IACS |8 glEs

NSO

N

A/ VA' N\
v

N

Lecture Outline

Review

Extension to Non-linear Boundaries

Review

Classifiers and Decision Boundaries

Last time, we derived a linear classifier based on the
intuition that a good classifier should

» maximize the distance between the points and the
decision boundary (maximize margin)

» misclassify as few points as possible

SVC as Optimization

With the help of geometry, we translated our wish list
into an optimization problem

N
g 2
min A n
anR"',w,waH E ;g

such thaty,(w'z, +b) >1-¢,, n=1,...,N
where ¢, quantifies the error at z,,.

The SVC optimization problem is often solved in an
alternate form (the dual form)

N
E 1 E : T
maX ap — 3 YnYmOn QT Ty
an>0, > anyn=0 2
n

n,m=1

Later we’ll see that this alternate form allows us to use
SVC with non-linear boundaries.

Decision Boundaries and Support Vectors

Recall how the error terms &,’s were defined: the points
where £, = 0 are precisely the support vectors

& 2
[Iwil = [lwl|
Misclassified ®
point

2

Margin =
[1wl|

Decision Boundaries and Support Vectors

Thus to re-construct the decision boundary, only the
support vectors are needed!

° & 2
[Iwll = llwl|
Misclassified ®
point

2

Margin =
[[wl

Decision Boundaries and Support Vectors

» The decision boundary of an SVC is given by

w'r+b= > n¥n (2, 20) + b

z, iS a support vector

where &,, and the set of support vectors are found
by solving the optimization problem.

» To classify a test point x4, we predict

Jrost = SigN (wT:c + B)

Extension to Non-linear Boundaries

Polynomial Regression: Two Perspectives

Given a training set

{(z1,91),..., (@n,yn)}

with a single real-valued predictor, we can view fitting a
2nd degree polynomial model

Wy + Wi x + w2x2

on the data as the process of finding the best quadratic
curve that fits the data. But in practice, we first expand
the feature dimension of the training set

0

1 .2
n’xn7$n)

Ty (T

and train a linear model on the expanded data

{(xg’ x}l’ x?\[? y1)7 R (x(])\f’ x}\[? aj%\ﬁ yN)}

Transforming the Data

The key observation is that training a polynomial model
is just training a linear model on data with transformed
predictors.

In our previous example, transforming the data to fit a
2nd degree polynomial model requires a map

¢:R— R

$(z) = (2°, 27,37
where R called the input space, R? is called the feature
space.

While the response may not have a linear correlation in
the input space R, it may have one in the feature space
R3.

SVC with Non-Linear Decision Boundaries

The same insight applies to classification: while the
response may not be linear separable in the input
space, it may be in a feature space after a fancy
transformation:

Input Space Feature Space

SVC with Non-Linear Decision Boundaries

The motto: instead of tweaking the definition of SVC to
accommodate non-linear decision boundaries, we map
the data into a feature space in which the classes are
linearly separable (or nearly separable):

» Apply transform ¢ : R/ — R’ on training data

Tp = H(Ty)

where typically J" is much larger than J.
» Train an SVC on the transformed data

{(e(x1),31), -+ (¢(xn), yn)}

The Kernel Trick

Since the feature space R”' is extremely high
dimensional, computing ¢ explicitly can be costly.

Instead, we note that computing ¢ is unnecessary.

Recall that training an SVC involves solving the
optimization problem

N
1 T

max Oy — = Y O O (T, T,

R i

In the above, we are only interested in computing inner

products ¢(x,,)" ¢(x,,) in the feature space and not the

quantities ¢(x,).

The Kernel Trick

The inner product between two vectors is a measure of
the similarity of the two vectors.

Definition

Given a transformation ¢ : R’ — R”’, from input space
R’ to feature space R’ the function K : R/ x R’ — R
defined by

K(zp,Tm) = ¢(x0) " ¢(T), Ty T € R’

is called the kernel function of ¢.

Generally, kernel function may refer to any function
K : R’ x R — R that measure the similarity of vectors
in R/, without explicitly defining a transform ¢.

The Kernel Trick

For a choice of kernel K,

K(xmxm> = ¢(xn)T¢(fpm>

we train an SVC by solving

max g Oy — — g YnYm O O K (T, 1)
Oénzov Zn Oénynfo 1
n,m—=

Computing K (x,, z,,) can be done without computing
the mappings ¢(x,,), ¢(x.,).
This way of training a SVC in feature space without

explicitly working with the mapping ¢ is called the
kernel trick.

Transforming Data: An Example

Let’s define ¢ : R? — RS by
¢ ([z1,z2]) = (1, V271, V229,23, 23, V23172)
The inner product in the feature space is
¢ ([z11,712]) " @ ([221, 222]) = (1 + 211221 + T12722)°

Thus, we can directly define a kernel function
K :R? xR? - R by

K(z1,20) = (1 + 211221 + T12720)%

Notice that we need not compute ¢ ([x11, z12]), @ ([x21, z22]) toO
compute K(x1, z2).

Kernel Functions

Common kernel functions include:

» Polynomial Kernel (kernel="'poly')
K(z1,20) = (] 25 + 1)°
where d is a hyperparameter

» Radial Basis Function Kernel (kernel="'rbf"')

2
K(z1,72) = exp {_—||$1 2| }

202
where o is a hyperparameter
» Sigmoid Kernel (kernel="'sigmoid')
K(z1,25) = tanh(kz| 5 + 6)

where k and ¢ are hyperparameters.

Let’s go to the notebook

	Review
	Extension to Non-linear Boundaries

