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Classifying Linear Separable Data
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Decision Boundaries Revisited

In logistic regression, we learn a decision boundary that
separates the training classes in the feature space.

When the data can be perfectly separated by a linear
boundary, we call the data linearly separable.

In this case, multiple decision boundaries can fit the
data. How do we choose the best?

Question: What happens to our logistic regression
model when training on linearly separable datasets?
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Decision Boundaries Revisited

Constraints on the decision boundary:

▶ In logistic regression, we typically learn an ℓ1 or ℓ2
regularized model.

So, when the data is linearly separable, we choose a
model with the ‘smallest coefficients’.

The purpose of regularization is to prevent
overfitting.
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Decision Boundaries Revisited

Constraints on the decision boundary:

▶ We can consider alternative constraints that
prevent overfitting.

For example, we may prefer a decision boundary
that does not ‘favor’ any class (esp. when the
classes are roughly equally populous).

Geometrically, this means choosing a boundary
that maximizes the distance ormargin between the
boundary and both classes.
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Decision Boundaries Revisited
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Geometry to Decision Boundaries

Recall that the decision boundary is defined by some
equation in terms of the predictors. A linear boundary is
defined by

w⊤x+ b = 0 (General equation of a hyperplane)

Recall that the non-constant coefficients, w, represent a
normal vector, pointing orthogonally away from the
plane
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Geometry to Decision Boundaries

Now, using some geometry, we can compute the
distance between any point to the decision boundary
using w and b.

The signed distance from a point x ∈ Rn to the decision
boundary is

D(x) =
w⊤x+ b

∥w∥
(Euclidean Distance Formula)
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Maximizing Margins

Now we can formulate our goal - find a decision
boundary that maximizes the distance to both classes -
as an optimization problemmax

w,b
M

such that |D(xn)| = yi(w
⊤xn+b)
∥w∥ ≥ M, n = 1, . . . , N

whereM is a real number representing the width of the
‘margin’ and yi = ±1. The inequalities |D(xn)| ≥ M are
called constraints.

The constrained optimization problem as present here
looks tricky. Let’s simplify it with a little geometric
intuition.
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Maximizing Margins

Notice that maximizing the distance of all points to the
decision boundary, is exactly the same as maximizing
the distance to the closest points.

The points closest to the decision boundary are called
support vectors.

For any plane, we can always scale the equation

w⊤x+ b = 0

so that the support vectors lie on the planes

w⊤x+ b = ±1,

depending on their classes.
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Maximizing Margins

For points on planes w⊤x+ b = ±1, their distance to the
decision boundary is ± 1

∥w∥ .

So we can define themargin of a decision boundary as
the distance to its support vectors,m = 2

∥w∥
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Support Vector Classifier: Hard Margin

Finally, we can reformulate our optimization problem -
find a decision boundary that maximizes the distance
to both classes - as the maximization of the margin,m,
while maintaining zero misclassifications,max

w,b

2

∥w∥
such that yn(w⊤xn + b) ≥ 1, n = 1, . . . , N

The classifier learned by solving this problem is called
hard margin support vector classification.

Often SVC is presented as a minimization problem:{
min
w,b

∥w∥2

such that yn(w⊤xn + b) ≥ 1, n = 1, . . . , N
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SVC and Convex Optimization

As a convex optimization problem SVC has been
extensively studied and can be solved by a variety of
algorithms

▶ (Stochastic) libLinear

Fast convergence, moderate computational cost
▶ (Greedy) libSVM

Fast convergence, moderate computational cost
▶ (Stochastic) Stochastic Gradient Descent

Slow convergence, low computational cost per
iteration

▶ (Greedy) Quasi-Newton Method

Very fast convergence, high computational cost

8



Classifying Linear Non-Separable Data
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The Margin/Error Trade-Off

Maximizing the margin is a good idea as long as we
assume that the underlying classes are linear
separable and that the data is noise free.

If data is noisy, we might be sacrificing generalizability
in order to minimize classification error with a very
narrow margin

With every decision boundary, there is a trade-off
between maximizing margin and minimizing the error.
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Support Vector Classifier: Soft Margin

Since we want to balance maximizing the margin and
minimizing the error, we want to use an objective
function that takes both into account:{

min
w,b

∥w∥2 + λError(w, b)

such that yn(w⊤xn + b) ≥ 1, n = 1, . . . , N

where λ is an intensity parameter.

So just how should we compute the error for a given
decision boundary?

11



Support Vector Classifier: Soft Margin

We want to express the error as a function of distance
to the decision boundary.

Recall that the support vectors have distance 1/∥w∥ to
the decision boundary. We want to penalize two types of
‘errors’

▶ (margin violation) points that are on the correct
side of the boundary but are inside the margin.
They have distance ξ/∥w∥, where 0 < ξ < 1.

▶ (misclassification) points that are on the wrong
side of the boundary. They have distance ξ/∥w∥,
where ξ > 1.

Specifying a nonnegative quantity for ξn is equivalent to
quantifying the error on the point xn.
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Support Vector Classifier: Soft Margin
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Support Vector Classifier: Soft Margin

Formally, we incorporate error terms ξn’s into our
optimization problem by: min

ξn∈R+,w,b
∥w∥2 + λ

N∑
n=1

ξn

such that yn(w⊤xn + b) ≥ 1− ξn, n = 1, . . . , N

The solution to this problem is called soft margin
support vector classification or simply support vector
classification.
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Tuning SVC

Choosing different values for λ in min
ξn∈R+,w,b

∥w∥2 + λ

N∑
n=1

ξn

such that yn(w⊤xn + b) ≥ 1− ξn, n = 1, . . . , N

will give us different classifiers.

In general,

▶ small λ penalizes errors less and hence the classifier
will have a large margin

▶ large λ penalizes errors more and hence the classifier
will accept narrow margins to improve classification

▶ setting λ = ∞ produces the hard margin solution
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Example

[Compare different classifiers]
[Investigate variance]
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