
Lecture #16: Boosting
Data Science 1

CS 109A, STAT 121A, AC 209A, E-109A

Pavlos Protopapas Kevin Rader
Rahul Dave Margo Levine



Lecture Outline

Review

Boosting Algorithms
Gradient Boosting
Relation to Gradient Descent
AdaBoost

2



Review

3



Bags and Forests of Trees

Last time we examined how the short-comings of single
decision tree models can be overcome by ensemble
methods - making one model out of many trees.

We focused on the problem of training large trees, these
models have low bias but high variance.

We compensated by training an ensemble of full
decision trees and then averaging their predictions -
thereby reducing the variance of our final model.

4



Bags and Forests of Trees

▶ Bagging:
– create an ensemble of full trees, each trained on a

bootstrap sample of the training set;
– average the predictions

▶ Random forest:
– create an ensemble of full trees, each trained on a

bootstrap sample of the training set;
– in each tree and each split, randomly select a subset of

predictors, choose a predictor from this subset for
splitting;

– average the predictions

Note that the ensemble building aspects of both
method are embarrassingly parallel!

4



Motivation for Boosting

Could we address the shortcomings of single decision
trees models in some other way?

For example, rather than performing variance reduction
on complex trees, can we decrease the bias of simple
trees - make themmore expressive?

A solution to this problem, making an expressive model
from simple trees, is another class of ensemble
methods called boosting.

5



Boosting Algorithms

6



Gradient Boosting

The key intuition behind boosting is that one can take
an ensemble of simple models {Th}h∈H and additively
combine them into a single, more complex model.

Each model Th might be a poor fit for the data, but a
linear combination of the ensemble

T =
∑
h

λhTh

can be expressive.

But which models should we include in our ensemble?
What should the coefficients or weights in the linear
combination be?

7



Gradient Boosting

Gradient boosting is a method for iteratively building a complex regression model T
by adding simple models. Each new simple model added to the ensemble
compensates for the weaknesses of the current ensemble.

1. Fit a simple model T (0) on the training data

{(x1, y1), . . . , (xN , yN )}.

Set T ← T (0) .

Compute the residuals {r1, . . . , rN} for T .

2. Fit a simple model, T i, to the current residuals, i.e. train using

{(x1, r1), . . . , (xN , rN )}.

3. Set T ← T + λT i

4. Compute residuals, set rn ← rn − λT i(xn), n = 1, . . . , N

5. Repeat steps 2-4 until stopping condition met

where λ is a constant called the learning rate.

7



Gradient Boosting

Gradient boosting is a method for iteratively building a complex regression model T
by adding simple models. Each new simple model added to the ensemble
compensates for the weaknesses of the current ensemble.

1. Fit a simple model T (0) on the training data

{(x1, y1), . . . , (xN , yN )}.

Set T ← T (0) .

Compute the residuals {r1, . . . , rN} for T .

2. Fit a simple model, T i, to the current residuals, i.e. train using

{(x1, r1), . . . , (xN , rN )}.

3. Set T ← T + λT i

4. Compute residuals, set rn ← rn − λT i(xn), n = 1, . . . , N

5. Repeat steps 2-4 until stopping condition met

where λ is a constant called the learning rate.

7



Gradient Boosting

Gradient boosting is a method for iteratively building a complex regression model T
by adding simple models. Each new simple model added to the ensemble
compensates for the weaknesses of the current ensemble.

1. Fit a simple model T (0) on the training data

{(x1, y1), . . . , (xN , yN )}.

Set T ← T (0) .

Compute the residuals {r1, . . . , rN} for T .

2. Fit a simple model, T i, to the current residuals, i.e. train using

{(x1, r1), . . . , (xN , rN )}.

3. Set T ← T + λT i

4. Compute residuals, set rn ← rn − λT i(xn), n = 1, . . . , N

5. Repeat steps 2-4 until stopping condition met

where λ is a constant called the learning rate.

7



Gradient Boosting

Gradient boosting is a method for iteratively building a complex regression model T
by adding simple models. Each new simple model added to the ensemble
compensates for the weaknesses of the current ensemble.

1. Fit a simple model T (0) on the training data

{(x1, y1), . . . , (xN , yN )}.

Set T ← T (0) .

Compute the residuals {r1, . . . , rN} for T .

2. Fit a simple model, T i, to the current residuals, i.e. train using

{(x1, r1), . . . , (xN , rN )}.

3. Set T ← T + λT i

4. Compute residuals, set rn ← rn − λT i(xn), n = 1, . . . , N

5. Repeat steps 2-4 until stopping condition met

where λ is a constant called the learning rate.

7



8



8



8



8



Why Does Gradient Boosting Work?

Intuitively, each simple model T (i) we add to our
ensemble model T , models the errors of T .

Thus, with each addition of T (i), the residual is reduced

rn − λT (i)(xn).

Note that gradient boosting has a tuning parameter, λ.

If we want to easily reason about how to choose λ and
investigate the effect of λ on the model T , we need a bit
more mathematical formalism.

In particular, we need to formulate gradient boosting as
a type of gradient descent.

9



A Brief Sketch of Gradient Descent

In optimization, when we wish to minimize a function,
called the objective function, over a set of variables, we
compute the partial derivatives of this function with
respect to the variables.

If the partial derivatives are sufficiently simple, one can
analytically find a common root - i.e. a point at which all
the partial derivatives vanish; this is called a stationary
point

If the objective function has the property of being
convex, then the stationary point is precisely the min.

10



A Brief Sketch of Gradient Descent

In practice, our objective functions are complicated and
analytically find the stationary point is intractable.

Instead, we use an iterative method called gradient descent:

1. initialize the variables at any value

x = [x1, . . . , xJ ]

2. take the gradient of the objective function at the current
variable values

∇f(x) =
[
∂f

∂x1
(x), . . . ,

∂f

∂xJ
(x)

]
3. adjust the variables values by some negative multiple of the

gradient
x← x− λ∇f(x)

The factor λ is often called the learning rate.
10



Why Does Gradient Descent Work?

Claim: If the function is convex, this iterative methods will
eventually move x close enough to the minimum, for an
appropriate choice of λ.

Why does this work? Recall, that as a vector, the gradient at
at point gives the direction for the greatest possible rate of
increase.

11



Why Does Gradient Descent Work?

Subtracting a λmultiple of the gradient from x, moves x
in the opposite direction of the gradient (hence towards
the steepest decline) by a step of size λ.

If f is convex, and we keep taking steps descending on
the graph of f , we will eventually reach the minimum.

11



Gradient Boosting as Gradient Descent

Often in regression, our objective is to minimize the MSE

MSE(ŷ1, . . . , ŷN ) =
1

N

N∑
i=1

(yi − ŷi)
2

Treating this as an optimization problem, we can try to
directly minimize the MSE with respect to the predictions

∇MSE =

[
∂MSE
∂ŷ1

, . . . ,
∂MSE
∂ŷN

]
= −2 [y1 − ŷ1, . . . , yN − ŷN ]

= −2 [r1, . . . , rN ]

The update step for gradient descent would look like

ŷn ← ŷn + λrn, n = 1, . . . , N

12



Gradient Boosting as Gradient Descent

There is two reasons why minimizing the MSE with
respect to ŷn’s is not interesting:

▶ We know where the minimumMSE occurs: ŷn = yn,
for every n.

▶ Learning sequences of predictions, ŷ1n, . . . , ŷ
i
n, . . .,

does not produce a model. The predictions in the
sequences do not depend on the predictors!

12



Gradient Boosting as Gradient Descent

The solution is to change the update step in gradient
descent. Instead of using the gradient - the residuals -
we use an approximation of the gradient that depends
on the predictors:

ŷ ← ŷn + λr̂n(xn), n = 1, . . . , N

In gradient boosting, we use a simple model to
approximate the residuals, r̂n(xn), in each iteration.

Motto: gradient boosting is a form of gradient descent
with the MSE as the objective function.

Technical note: note that gradient boosting is
descending in a space of models or functions relating
xn to yn!

12



Gradient Boosting as Gradient Descent

But why do we care that gradient boosting is gradient
descent?

By making this connection, we can import the massive
amount of techniques for studying gradient descent to
analyze gradient boosting.

For example, we can easily reason about how to choose
the learning rate λ in gradient boosting.

12



Choosing a Learning Rate

Under ideal conditions, gradient descent iteratively
approximates and converges to the optimum.

When do we terminate gradient descent?

▶ We can limit the number of iterations in the
descent. But for an arbitrary choice of maximum
iterations, we cannot guarantee that we are
sufficiently close to the optimum in the end.

▶ If the descent is stopped when the updates are
sufficiently small (e.g. the residuals of T are small),
we encounter a new problem: the algorithmmay
never terminate!

Both problems have to do with the magnitude of the
learning rate, λ.

13



Choosing a Learning Rate

For a constant learning rate, λ, if λ is too small, it takes
too many iterations to reach the optimum.

If λ is too large, the algorithmmay ‘bounce’ around the
optimum and never get sufficiently close.

13



Choosing a Learning Rate

Choosing λ:
▶ If λ is a constant, then it should be tuned through

cross validation.
▶ For better results, use a variable λ. That is, let the

value of λ depend on the gradient

λ = h(∥∇f(x)∥),

where ∥∇f(x)∥ is the magnitude of∇f(x). So

– around the optimum, when the gradient is small, λ
should be small

– far from the optimum, when the gradient is large, λ
should be larger

13



Motivation for AdaBoost

Using the language of gradient descent also allow us to
connect gradient boosting for regression to a boosting
algorithm often used for classification, AdaBoost.

In classification, we typically want to minimize the
classification error:

Error =
1

N

N∑
n=1

1(yn ̸= ŷn), 1(yn ̸= ŷn) =

{
0, yn = ŷn

1, yn ̸= ŷn

Naïvely, we can try to minimize Error via gradient
descent, just like we did for MSE in gradient boosting.

Unfortunately, Error is not differentiable with respect to
the predictions, ŷn!

14



Motivation for AdaBoost

Our solution: we replace the Error function with a
differentiable function that is a good indicator of
classification error.

The function we choose is called exponential loss

Exp =
1

N

N∑
n=1

exp(−ynŷn), yn ∈ {1,−1}

Exponential loss is differentiable with respect to ŷn and
it is an upper bound of Error.

14



Gradient Descent with Exponential Loss

We first compute the gradient for Exp:

∇Exp = [−y1 exp(−y1ŷ1), . . . ,−yN exp(−yN ŷN)] .

It’s easier to decompose each −yn exp(−ynŷn) as wnyn,
where wn = exp(−ynŷn).
This way, we see that the gradient is just a re-weighting
applied the target values

∇Exp = [−w1y1, . . . ,−wNyN ] .

Notice that when yn = ŷn, the weight wn is small; when
yn ̸= ŷn, the weight is larger.

15



Gradient Descent with Exponential Loss

The update step in the gradient descent is

ŷn ← ŷn − λwnyn, n = 1, . . . , N

Just like in gradient boosting, we approximate the
gradient, λwnyn with a simple model, T (i), that depends
on xn.

This means training T (i) on a re-weighted set of target
values,

{(x1, w1y1), . . . , (xN , wNyN)}.

That is, gradient descent with exponential loss means
iteratively training simple models that focuses on the
points misclassified by the previous model.

15



AdaBoost

With a minor adjustment to the exponential loss function, we have
the algorithm for gradient descent:

1. Choose an initial distribution over the training data, wn = 1/N

2. At the i-th step, fit a simple classifier T (i) on weighted
training data

{(x1, w1y1), . . . , (xN , wNyN )}.

3. Update the weights

wn ←
wn exp(−λ(i)ynT

(i)(xn))

Z

where Z is the normalizing constant for the collection of
updated weights

4. Update T , T ← T + λ(i)T (i)

where λ is the learning rate.
16



Choosing the Learning Rage

Unlike in the case of gradient boosting for regression,
we can analytically solve for the optimal learning rate
for AdaBoost, by optimizing:

argmin
λ

1

N

N∑
n=1

exp
[
−yn(T + λ(i)T (i)(xn))

]
Doing so, we get that

λ(i) =
1

2
ln

1− ϵ

ϵ
, ϵ =

N∑
n=1

wn1(yn ̸= T (i)(xn))

17



Example

[compare boosting, decision tree, bagging and RF]

18


	Review
	Boosting Algorithms
	Gradient Boosting
	Relation to Gradient Descent
	AdaBoost


