Lecture #15: A Brief Review

Data Science 1 CS 109A, STAT 121A, AC 209A, E-109A

Pavlos Protopapas Kevin Rader Margo Levine Rahul Dave

CS 109A: What have we learned?

Modules

The semester has been organized into 3 major modules so far:

Modules

The semester has been organized into 3 major modules so far:

- Module 0: Intro to Data and Data Science (and Python)
- ► Module 1: Transportation Data (and Regression)
- Module 2: Medical Data (and Classification)

We have learned various approaches to perform both predictions and inferences within each of these frameworks.

Regression Methods

When is it appropriate to perform a regression method? What regression models have we learned?

Regression Methods

When is it appropriate to perform a regression method? What regression models have we learned?

- 1. Linear Regression (simple, multiple, polynomial, interactions, model selection, Ridge & Lasso, etc...)
- 2. k-NN

What is the main difference between these two types of modules?

Classification Methods

When is it appropriate to perform a classification method? What classification models have we learned?

Classification Methods

When is it appropriate to perform a classification method? What classification models have we learned?

- Logistic Regression: same details as linear regression apply
- 2. k-NN
- 3. Discriminant Analysis: LDA/QDA
- 4. Classification Trees

What is the main difference between these two types of models (advantages and disadvantages)? When should you use each method?

Choosing between Models

How can we choose between our various methods/models to answer a question at hand? What approaches/measures can we use to make this determination?

Choosing between Models

How can we choose between our various methods/models to answer a question at hand? What approaches/measures can we use to make this determination?

- 1. In-sample: AIC, BIC
- 2. Out-of-sample: Cross-Validation

What measure(s) should we use when we perform cross-validation?

Dealing with Messy Data

What issues have arisen when dealing with real data? How have we handled them?

Dealing with Messy Data

What issues have arisen when dealing with real data? How have we handled them?

- Categorical Predictors: might make sense to one-hot encode
- 2. Missing Data: might make sense to impute
- 3. High Dimensionality: might make sense to use a data reduction technique.
- 4. Too many observations: due preliminary analysis on a subset

How are predictions affected? How are inferences affected?

Dealing with High Dimensionality

What does 'high dimensionality' mean? What issues arise when this happens? How can we handle it?

Dealing with High Dimensionality

What does 'high dimensionality' mean? What issues arise when this happens? How can we handle it?

- 1. Model Selection: subset variable selection
- 2. Regularization: LASSO and Ridge like approaches (penalize the loss function)
- 3. PCA: create new predictor variables that encapsulate the 'essence' of all your predictor data with a minimal number of variables.

How can we compare methods to determine which approach is best?

Other things we've learned

- Scraping, Data Gathering, Data Wrangling
- ► EDA: Visualization and Summary Statistics
- ► t-tests and p-values: probabilistic/ approaches to perform inferences
- Bootstrapping: empirical approach to perform inferences
- Misclassification Rates, Types of Errors, Confusion Matrices/Tables, and ROC Curves
- Train vs. Test vs. Classification
- Standardization vs. Normalization. When should we do it?
- ► Anything else?

The Data Science Process

Don't forget what everything is all about:

