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Classification Methods

By the end of Module 2, we will have learned the following
classification methods:

1. Logistic Regression

2. k-NN

3. Discriminant Analysis

4. Classification Trees

Today’s lecture is focused on Discriminant Analysis: linear
(LDA) and quadratic (QDA). Wednesday’s lecture will cover
Classification Trees.
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Linear Discriminant Analysis (LDA)

Linear discriminant analaysis (LDA) takes a different
approach to classification than logistic regression. Rather
than attempting to model the conditional distribution of Y
givenX , P (Y = k|X = x), LDA models the distribution of the
predictorsX given the different categories that Y takes on,
P (X = x|Y = k). In order to flip these distributions around to
model P (X = x|Y = k) an analyst uses Bayes’ theorem.

In this setting with one feature (oneX), Bayes’ theorem can
then be written as:

P (Y = k|X = x) =
fk(x)πk∑K
j=1 fj(x)πj

What does this mean?
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Linear Discriminant Analysis (LDA)

P (Y = k|X = x) =
fk(x)πk∑K
j=1 fj(x)πj

The left hand side, P (Y = k|X = x), is called the posterior
probability and gives the probability that the observation is
in the kth category given the feature,X , takes on a specific
value, x. The numerator on the right is conditional
distribution of the feature within category k, fk(x), times the
prior probability that observation is in the kth category.

The Bayes’ classifier is then selected. That is the observation
assigned to the group for which the posterior probability is
the largest.
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Inventor of LDA: R.A. Fisher

The ’Father’ of Statistics. More famous for
work in genetics (statistically concluded that
Mendel’s genetic experiments were
’massaged’). Novel statistical work includes:

1. Experimental Design

2. ANOVA

3. F-test (why do you think it’s called the F -test?)

4. Exact test for 2x2 tables

5. Maximum Likelihood Theory

6. Use of α = 0.05 significance level: �The value for which P
= .05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take
this point as a limit in judging whether a deviation is to
be considered significant or not.�

7. And so much more...
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LDA for one predictor
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LDA for one predictor

LDA has the simplest form when there is just one
predictor/feature (p = 1). In order to estimate fk(x), we have
to assume it comes from a specific distribution. IfX is
quantitative, what distribution do you think we should use?

One common assumption is that fk(x) comes from a Normal
distribution:

fk(x) =
1√
2πσ2

k

exp

(
−(x− µk)

2

2σ2
k

)
.

In shorthand notation, this is often written as
X|Y = k ∼ N(µk, σ

2
k), meaning, the distribution of the feature

X within category k is Normally distributed with mean µk

and variance σ2
k .
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LDA for one predictor (cont.)

An extra assumption that the variances are equal,
σ2
1 = σ2

2 = ... = σ2
K will simplify our lives.

Plugging this assumed ‘likelihood’ (aka, distribution) into the
Bayes’ formula (to get the posterior) results in:

P (Y = k|X = x) =
πk

1√
2πσ2

exp
(
− (x−µk)

2

2σ2

)
∑K

j=1 πj
1√
2πσ2

exp
(
− (x−µj)2

2σ2

)
The Bayes classifier will be the one that maximizes this over
all values chosen for x. How should we maximize?

So we take the log of this expression and rearrange to
simplify our maximization...

10



LDA for one predictor (cont.)

An extra assumption that the variances are equal,
σ2
1 = σ2

2 = ... = σ2
K will simplify our lives.

Plugging this assumed ‘likelihood’ (aka, distribution) into the
Bayes’ formula (to get the posterior) results in:

P (Y = k|X = x) =
πk

1√
2πσ2

exp
(
− (x−µk)

2

2σ2

)
∑K

j=1 πj
1√
2πσ2

exp
(
− (x−µj)2

2σ2

)
The Bayes classifier will be the one that maximizes this over
all values chosen for x. How should we maximize?

So we take the log of this expression and rearrange to
simplify our maximization...

10



LDA for one predictor (cont.)

So in order to perform classification, we maximize the
following simplified expression:

δk(x) = x
µk

σ2
−

µ2
k

2σ2
+ logπk

How does this simplify if we have just two classes (K = 2)
and if we set our prior probabilities to be equal?

This is equivalent to choosing a decision boundary for x for
which

x =
µ2
1 − µ2

2

2(µ1 − µ2)
=

µ1 + µ2

2

Intuitively, why does this expression make sense? What do
we use in practice?
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LDA for one predictor (cont.)

In practice we don’t know the true mean, variance, and prior.
So we estimate them with the classical estimates, and
plug-them into the expression:

µ̂k =
1

nk

∑
i:yi=k

xi

and

σ̂2 =
1

n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)
2

where n is the total sample size and nk is the sample size
within class k (thus, n =

∑
nk).
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LDA for one predictor (cont.)

This classifier works great if the classes are about equal in
proportion, but can easily be extended to unequal class sizes.

Instead of assuming all priors are equal, we instead set the
priors to match the ’prevalence’ in the data set:

π̂k = n̂k/n

Note: we can use a prior probability from knowledge of the
subject as well; for example, if we expect the test set to have
a different prevalence than the training set.

How could we do this in the Cancer data set in HW 6?
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LDA for one predictor (cont.)

Plugging all of these estimates back into the original logged
maximization formula we get:

δ̂k(x) = x
µ̂k

σ̂2
−

µ̂2
k

2σ̂2
+ log π̂k

Thus this classifier is called the linear discriminant
classifier: this discriminant function is a linear function of x.
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Illustration of LDA when p = 1
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LDA for p > 1
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LDA when p > 1

LDA generalizes ’nicely’ to the case when there is more than
one predictor.

Instead of assuming the one predictor is Normally
distributed, it assumes that the set of predictors for each
class is ’multivariate normal distributed’ (shorthand: MVN).
What does that mean?

This means that the vector ofX for an observation has a
multidimensional normal distribution with a mean vector, µ,
and a covariance matrix, Σ.
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MVN distribution for 2 variables

Here is a visualization of the Multivariate Normal distribution
with 2 variables:
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MVN distribution

The joint PDF of the Multivariate Normal distribution,
X⃗ ∼ MVN(µ⃗,Σ), is:

f(x⃗) =
1

2πp/2|Σ|1/2
exp

(
−1

2
(x⃗− µ⃗)TΣ−1(x⃗− µ⃗)

)
where x⃗ is a p dimensional vector and |Σ| is the determinant
of the p× p covariance matrix.

Let’s do a quick dimension analysis sanity check...

What do µ⃗ and Σ look like?
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LDA for p > 1 (cont.)

Discriminant analysis in the multiple predictor case
assumes the set of predictors for each class is then
multivariate Normal: X⃗ ∼ MVN(µ⃗k,Σk).

Just like with LDA for one predictor, we make an extra
assumption that the covariances are equal in each group,
Σ2
1 = Σ2

2 = ... = Σ2
K in order to simplify our lives.

Now plugging this assumed likelihood into the Bayes’
formula (to get the posterior) results in:

P (Y = k|X⃗ = x⃗) =
πk

1
2πp/2|Σ|1/2 exp

(
−1

2(x⃗− µ⃗k)
TΣ−1(x⃗− µ⃗k)

)
∑K

j=1
1

2πp/2|Σ|1/2 exp
(
−1

2(x⃗− µ⃗j)TΣ−1(x⃗− µ⃗j)
)
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LDA for p > 1 (cont.)

Then doing the same steps as before (taking log and
maximizing), we see that the classification will for an
observation based on its predictors, x⃗, will be the one that
maximizes (maximum ofK of these δk(x⃗)):

δk(x⃗) = x⃗TΣ−1µ⃗k −
1

2
µ⃗T
kΣ

−1µ⃗k + logπk

Note: this is just the vector-matrix version of the formula we
saw earlier in lecture:

δk(x) = x
µk

σ2
−

µ2
k

2σ2
+ logπk

What do we have to estimate now with the vector-matrix
version? How many parameters are there?

There are pK means, pK variances,K prior proportions, and(
p
2

)
= p(p−1)

2 covariances to estimate.
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LDA whenK > 2

The linear discriminant nature of LDA still holds not only
when p > 1, but also whenK > 2 for that matter as well.

A picture can be very illustrative:
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QDA
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Quadratic Discriminant Analysis (QDA)

A generalization to linear discriminant analysis is quadratic
discriminant analysis (QDA).

Why do you suppose the choice in name?

The implementation is just a slight variation on LDA. Instead
of assuming the covariances of the MVN distributions within
classes are equal, we instead allow them to be different.

This relaxation of an assumption completely changes the
picture...
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QDA in a picture

A picture can be very illustrative:
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QDA (cont.)

When performing QDA, performing classification for an
observation based on its predictors x⃗ is equivalent to
maximizing the following over theK classes:

δk(x⃗) = −1

2
x⃗TΣ−1

k x⃗+ x⃗TΣ−1
k µ⃗k−

1

2
µ⃗T
kΣ

−1
k µ⃗k−

1

2
log |Σk|+ logπk

Notice the ‘quadratic form’ of this expression. Hence the
name QDA.

Now howmany parameters are there to be estimated?

There are pK means, pK variances,K prior proportions, and(
p
2

)
K =

(
p(p−1)

2

)
K covariances to estimate. This could slow

us down very much ifK is large...
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Discriminant Analysis in Python

LDA is already implemented in Python via the
sklearn.discriminant_analysis package through the
LinearDiscriminantAnalysis function.

QDA is in the same package and is the
QuadraticDiscriminantAnalysis function.

It’s very easy to use. Let’s see how this works
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Discriminant Analysis in Python
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QDA vs LDA

So both QDA and LDA take a similar approach to solving this
classification problem: they use Bayes’ rule to flip the
conditional probability statement and assume observations
within each class are multivariate Normal (MVN) distributed.

QDA differs in that it does not assume a common covariance
across classes for these MVNs. What advantage does this
have? What disadvantage does this have?
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QDA vs LDA (cont.)

So generally speaking, when should QDA be used over LDA?
LDA over QDA?

The extra covariance parameters that need to be estimated
in QDA not only slow us down, but also allow for another
opportunity for overfitting. Thus if your training set is small,
LDA should perform better for ‘out-of-sample prediction‘, aka,
predicting future observations (how do we mimic this
process?)
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Comparison of Classification Methods (so far)
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A Comparison of Methods

We have seen 4 major methods for doing classification:

1. Logistic Regression

2. k-NN

3. LDA

4. QDA

For a specific problem, which approach should be used?

Well of course, it depends on the nature of the data. So how
should we decide?

Visualize the data!

32



A Comparison of Methods

We have seen 4 major methods for doing classification:

1. Logistic Regression

2. k-NN

3. LDA

4. QDA

For a specific problem, which approach should be used?

Well of course, it depends on the nature of the data. So how
should we decide?

Visualize the data!

32



A Comparison of Methods

We have seen 4 major methods for doing classification:

1. Logistic Regression

2. k-NN

3. LDA

4. QDA

For a specific problem, which approach should be used?

Well of course, it depends on the nature of the data. So how
should we decide?

Visualize the data!

32



Six Classification Models We’ll Compare

Let’s investigate which method will work the best (as
measured by lowest overall classification error rate), by
considering 6 different models for 4 different data sets (each
data set as a pair of predictors...you can think of them as the
first 2 PCA components). The 6 models to consider are:

1. A logistic regression with only ’linear’ main effects

2. A logistic regression with only ’linear’ and ’quadratic’
effects

3. LDA

4. QDA

5. k-NN where k = 3

6. k-NN where k = 25

What else will also be important to measure (besides error
rate)?
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Which method should perform better? #1

n = 20, 000, p = 2,K = 2,
π1 = π2 = 0.5

misclass run time
method rate (ms)
logit1 0.04410 417.95
logit2 0.04405 229.71
lda 0.04425 50.63
qda 0.04410 49.08
knn3 0.05225 1856.11
knn25 0.04500 2166.57

Notice anything fishy about our
answers? What did Kevin do?
What should he have done?
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Easy to implement in Python
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Which method should perform better? #2

n = 20, 000, p = 2,K = 2,
π1 = π2 = 0.5

misclass run time
method rate (ms)
logit1 0.12230 169.53
logit2 0.11860 196.42
lda 0.12215 47.93
qda 0.11445 47.03
knn3 0.14380 1861.90
knn25 0.12015 2223.13
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Which method should perform better? #3

n = 20, 000, p = 2,K = 2,
π1 = π2 = 0.5

misclass run time
method rate (ms)
logit1 0.20260 1234.35
logit2 0.19535 192.99
lda 0.20320 49.08
qda 0.21450 60.61
knn3 0.23300 1869.44
knn25 0.20270 2166.77
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Which method should perform better? #4

n = 20, 000, p = 2,K = 2,
π1 = π2 = 0.5

misclass run time
method rate (ms)
logit1 0.45690 1181.44
logit2 0.37880 147.95
lda 0.45770 51.06
qda 0.40705 44.04
knn3 0.34820 1835.42
knn25 0.30655 2126.38
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Summary of Results

Generally speaking:
1. LDA outperforms Logistic Regression

if the distribution
of predictors is reasonably MVN (with constant
covariance).

2. QDA outperforms LDA if the covariances are not the same
in the groups.

3. k-NN outperforms the others if the decision boundary is
extremely non-linear.

4. Of course, we can always adapt our models (logistic and
LDA/QDA) to include polynomial terms, interaction
terms, etc... to improve classification (watch out for
overfitting!)

5. In order of computational speed (generally speaking, it
depends onK , p, and n of course):

LDA > QDA > Logistic > k-NN
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