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Logistic Regression: a Brief Review
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Multiple Logistic Regression

Earlier we saw the general form of simple logistic regression,
meaning when there is just one predictor used in the model.
What was the model statement (in terms of linear
predictors)?

log

(
P (Y = 1)

1− P (Y = 1)

)
= β0 + β1X

Multiple logistic regression is a generalization to multiple
predictors. More specifically we can define a multiple logistic
regression model to predict P (Y = 1) as such:

log

(
P (Y = 1)

1− P (Y = 1)

)
= β0 + β1X1 + β2X2 + ...+ βpXp

where there are p predictors: X = (X1, X2, ..., Xp).
Note: statisticians are often lazy and use the notation log to
mean ln (the text does this). We will write log10 if this is what
we mean.
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Interpreting Multiple Logistic Regression: an Example

Let’s get back to the NFL data. We are attempting to predict
whether a play results in a TD based on location (yard line)
and whether the play was a pass. The simultaneous effect of
these two predictors can be brought into one model.
Recall from earlier we had the following estimated models:

log

(
̂P (Y = 1)

1− ̂P (Y = 1)

)
= −7.425 + 0.0626 ·Xyard

log

(
̂P (Y = 1)

1− ̂P (Y = 1)

)
= −4.061 + 1.106 ·Xpass

The results for the multiple logistic regression model are on
the next slide.
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Interpreting Multiple Logistic Regression: an Example
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Some questions

1. Write down the complete model. Break this down into the
model to predict log-odds of a touchdown based on the
yard line for passes and the same model for non-passes.
How is this different from the previous model (without
interaction)?

2. Estimate the odds ratio of a TD comparing passes to
non-passes.

3. Is there any evidence of multicollinearity in this model?

4. Is there any confounding in this problem?
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Interactions in Multiple Logistic Regression

Just like in linear regression, interaction terms can be
considered in logistic regression.

An interaction terms is incorporated into the model the same
way, and the interpretation is very similar (on the log-odds
scale of the response of course).

Write down the model for the NFL data for the 2 predictors
plus the interactions term.
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Interpreting Multiple Logistic Regression with Interaction: an Example
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Some questions

1. Write down the complete model. Break this down into the
model to predict log-odds of a touchdown based on the
yard line for passes and the same model for non-passes.
How is this different from the previous model (without
interaction)?

2. Use this model to estimate the probability of a
touchdown for a pass at the 20 yard line. Do the same for
a run at the 20 yard line.

3. Use this model to estimate the probability of a
touchdown for a pass at the 99 yard line. Do the same for
a run at the 99 yard line.

4. Is this a stronger model than the previous one? How
would we check?
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Classification Boundaries
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Classification

Recall that we could attempt to purely classify each
observation based on whether the estimated P (Y = 1) from
the model was greater than 0.5.

When dealing with ‘well-separated’ data, logistic regression
can work well in performing classification.

We saw a 2-D plot last time which had two predictors,X1 and
X2 and depicted the classes as different colors. A similar one
is shown on the next slide.
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2D Classification in Logistic Regression: an Example
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2D Classification in Logistic Regression: an Example

Would a logistic regression model perform well in classifying
the observations in this example?

What would be a good logistic regression model to classify
these points?

Based on these predictors, two separate logistic regression
model were considered that were based on different ordered
polynomials ofX1 andX2 and their interactions. The ‘circles’
represent the boundary for classification.

How can the classification boundary be calculated for a
logistic regression?
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2D Classification in Logistic Regression: an Example

In the previous plot, which classification boundary performs
better? How can you tell? How would you make this
determination in an actual data example?

We could determine the misclassification rates in left out
validation or test set(s)
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Regularization in Logistic Regression
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Regularization in Linear Regression

Based on the Likelihood framework, a loss function can be
determined based on the likelihood function.

We saw in linear regression that maximizing the
log-likelihood is equivalent to minimizing the sum of
squares error:

argmin
n∑

i=1

(yi − ŷi)
2
= argmin

n∑
i=1

(yi − (β0 + β1x1i + ...+ βpxpi))
2

And a regularization approach was to add a penalty factor to
this equation. Which for Ridge Regression becomes:

argmin

 n∑
i=1

yi −

β0 +

n∑
j=1

βjxji

2

+ λ

n∑
j=1

β2
j


This penalty shrinks the estimates towards zero, and had the
analogue of using a Normal prior in the Bayesian paradigm.
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Loss function in Logistic Regression

A similar approach can be used in logistic regression. Here,
maximizing the log-likelihood is equivalent to minimizing
the following loss function:

argmin

[
−

n∑
i=1

(yi log(p̂i) + (1− yi) log(1− p̂i)

]

where p̂i =
exp(β0+

∑n
j=1 βjxji)

1+exp(β0+
∑n

j=1 βjxji)
.

Why is this a good loss function to minimize? Where does
this come from?

The log-likelihood for independent Yi ∼ Bern (pi):
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Regularization in Logistic Regression

A penalty factor can then be added to this loss function and
results in a new loss function that penalizes large values of
the parameters:

argmin

[
−

n∑
i=1

[yi log(p̂i) + (1− yi) log(1− p̂i)] + λ

n∑
j=1

β2
j

]

The result is just like in linear regression: shrinkage towards
zero of the parameters.

In practice, the intercept is usually not part of the penalty
factor, and is thus not shrunk towards zero.

Note: the sklearn package uses a different tuning parameter:
instead of λ they use a constant that is essentially C = 1/λ.
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Regularization in Logistic Regression: an Example

Let’s see how this plays out in an example in logistic
regression.

20



Regularization in Logistic Regression: an Example
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Regularization in Logistic Regression: an Example
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Regularization in Logistic Regression: an Example

Just like in linear regression, the shrinkage factor must be
chosen. How should we go about doing this?

Through building multiple training and test sets (through
k-fold or random subsets), we can select the best shrinkage
factor to mimic out-of-sample prediction.

How could we measure how well each model fits the test set?
We could measure this based on the proposed loss function!
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Multinomial Logistic Regression
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Logistic Regression for predicting more than 2 Classes

There are several extensions to standard logistic regression
when the response variable Y has more than 2 categories.
The two most common are :

1. ordinal logistic regression

2. multinomial logistic regression.

Ordinal logistic regression is used when the categories have
a specific hierarchy (like class year: Freshman, Sophomore,
Junior, Senior; or a 7-point rating scale from strongly
disagree to strongly agree).

Multinomial logistic regression is used when the categories
have no inherent order (like eye color: blue, green, brown,
hazel, et...).
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Multinomial Logistic Regression

The most common approach to estimating a nominal
(not-ordinal) categorical variable that has more than 2
classes. The first approach sets one of the categories in the
response variable as the reference group, and then fits
separate logistic regression models to predict the other
cases based off of the reference group. For example we could
attempt to predict a student’s concentration:

y =


1 if Computer Science (CS)
2 if Statistics
3 otherwise

.

from predictors x1 number of psets per week and x2 how
much time spent in Lamont Library.
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Multinomial Logistic Regression (cont.)

We could select the y = 3 case as the reference group (other
concentration), and then fit two separate models: a model to
predict y = 1 (CS) from y = 3 (others) and a separate model
to predict y = 2 (Stat) from y = 3 (others).

Ignoring interactions, how many parameters would need to
be estimated?

How could these models be used to estimate the probability
of an individual falling in each concentration?
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One vs. Rest (ovr) Logistic Regression (cont.)

The default multiclass logistic regression model is called the
’One vs. Rest’ approach.

If there are 3 classes, then 3 separate logistic regressions are
fit, where the probability of each category is predicted over
the rest of the categories combined. So for the concentration
example, 3 models would be fit:

1. a first model would be fit to predict CS from (Stat and
Others) combined

2. a second model would be fit to predict Stat from (CS and
Others) combined

3. a third model would be fit to predict Others from (CS and
Stat) combined

An example to predict play call from the NFL data follows...
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OVR Logistic Regression in Python
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Classification for more than 2 Categories

When there are more than 2 categories in the response
variable, then there is no guarantee that P (Y = k) ≥ 0.5 for
any one category. So any classifier based on logistic
regression will instead have to select the group with the
largest estimated probability.

The classification boundaries are then muchmore difficult to
determine. We will not get into the algorithm for drawing
these in this class.
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Bayes Theorem and Misclassification Rates
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Bayes’ Theorem

We defined conditional probability as:

P (B|A) = P (B ∩A)

P (A)

And using the fact that P (B ∩A) = P (A|B)P (B) we get
Bayes’ Theroem:

P (B|A) =
P (A|B)P (B)

P (A)

Another version of Bayes’ Theorem is found by substituting in
the Law of Total Probability (LOTP) into the denominator:

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|BC)P (BC)

Where have we seen Bayes’ Theorem before? Why do we care?
32



Diagnostic Testing

In the diagnostic testing paradigm, one cares about whether
the results of a test (like a classification test) matches truth
(the true class that observation belongs to). The simplest
version of this is trying to detect disease (D+ vs. D−) based
on a diagnostic test (T+ vs. T−).

Medical examples of this include various screening tests:
breast cancer screening through (i) self-examination and (ii)
mammographies, prostate cancer screening through (iii) PSA
tests, and Colo-rectal cancer through (iv) colonoscopies.

These tests are a little controversial because of poor
predictive probability of the tests.
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Diagnostic Testing (cont.)

Bayes’ theorem can be rewritten for diagnostic tests:

P (D + |T+) =
P (T + |D+)P (D+)

P (T + |D+)P (D+) + P (T + |D−)P (D−)

These probability quantities can then be defined as:
▶ Sensitivity: P (T + |D+)

▶ Specificity: P (T − |D−)

▶ Prevalence: P (D+)

▶ Positive Predictive Value: P (D + |T+)

▶ Negative Predictive Value: P (D − |T−)

How do positive and negative predictive values relate? Be
careful...
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Diagnostic Testing (cont.)

Wementioned that these tests are a little controversial
because of their poor predictive probability. When will these
tests have poor positive predictive probability?

When the disease is not very prevalent, then the number of
’false positives’ will overwhelm the number of true positive.
For example, PSA screening for prostate cancer has
sensitivity of about 90% and specificity of about 97% for some
age groups (men in their fifties), but prevalence is about 0.1%.

What is positive predictive probability for this diagnostic
test?
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Why do we care?

As data scientists, why do we care about diagnostic testing
from the medical world? (hint: it’s not just because Kevin is a
trained biostatistician!)

Because classification can be thought of as a diagnostic test.

Let Yi = k be the event that observation i truly belongs to
category k, and let Ŷi = k be the event that we correctly
predict it to be in class k. Then Bayes’ rule states that our
Positive Predictive Value for classification is:

P (Yi = k|Ŷi = k) =
P (Ŷi = k|Yi = k)P (Yi = k)

P (Ŷi = k|Yi = k)P (Yi = k) + P (Ŷi = k|Yi ̸= k)P (Yi ̸= k)

Thus the probability of a predicted outcome truly being in a
specific group depends on what? The proportion of
observations in that class!
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Error in Classification

There are 2 major types of error in classification problems
based on a binary outcome. They are:

▶ False positives: incorrectly predicting Ŷ = 1 when it truly
is in Y = 0.

▶ False negative: incorrectly predicting Ŷ = 0 when it truly
is in Y = 1.

The results of a classification algorithm are often
summarized in two ways: a confusion table, sometimes
called a contingency table, or a 2x2 table (more generally kxk
table) and an receiver operating characteristics (ROC) curve.
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Confusion table

When a classification algorithm (like logistic regression) is
used, the results can be summarize in a kxk table as such:

True Republican Status
Yes No

Predicted Yes 487 288
Republican No 218 314

The table above was a classification based on a logistic
regression model to predict political party (Dem. vs. Rep.)
based on 3 predictors: X1 = whether respondent believes
abortion is legal,X1 = income (logged) andX3 = years of
education.

What are the false positive and false negative rates for this
classifier?
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Bayes’ Classifier Choice

A classifier’s error rates can be tuned to modify this table.
How?

The choice of the Bayes’ classifier level will modify the
characteristics of this table.

If we thought is was more important to predict republicans
correctly (lower false positive rate), what could we do for our
Bayes’ classifier level?

We could classify instead based on:

P̂ (Y = 1) < π

and we could choose π to be some level other than 0.5. Let’s
see what the table looks like if π were 0.28 or 0.52 instead
(why such strange numbers?).
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Other Confusion table

Based on π = 0.28:

True Republican Status
Yes No

Predicted Yes 247 528
Republican No 80 452

What has improved? What has worsened?

Based on π = 0.52:

True Republican Status
Yes No

Predicted Yes 627 148
Republican No 388 144

Which should we choose? Why?
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ROC Curves
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ROC Curves

The ROC curve illustrates the trade-off for all possible
thresholds chosen for the two types of error (or correct
classification).

The vertical axis displays the true positive predictive value
and the horizontal axis depicts the true negative predictive
value.

What is the shape of an ideal ROC curve?

See next slide for an example.
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ROC Curves
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ROC Curve Example
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ROC Curve for measuring classifier preformance

The overall performance of a classifier, calculated over all
possible thresholds, is given by the area under the ROC curve
(’AUC’).

An ideal ROC curve will hug the top left corner, so the larger
the AUC the better the classifier.

What is the worst case scenario for AUC? What is the best
case? What is AUC if we independently just flip a coin to
perform classification?

This AUC then can be use to compare various approaches to
classification: Logistic regression, LDA (to come), kNN, etc...
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